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1

Introduction

Item response theory (IRT) provides a framework for modeling and
analyzing item response data. The advantages of item response theory
over classical test theory for analyzing mental test data are well
documented (see, for example, Lord, 1980; Hambleton & Swaminathan,
1985; Hambleton et al., 1991). IRT postulates that an examinee’s
performance on a test depends on a set of unobservable “latent traits” that
characterize the examinee. An examinee’s observed score on an item is
regressed on the latent traits. The resulting regression model, termed an
item response model, specifies the relationship between the item
response and the latent traits, with the coefficients of the model
corresponding to parameters that characterize the item. It is this item-
level modeling that gives IRT its advantages over classical test theory.

IRT is based on strong mathematical and statistical assumptions, and
only when these assumptions are met, at least to a reasonable degree, can
item response theory methods be implemented effectively for analyzing
educational and psychological test data and for drawing inferences about
properties of the tests and the performance of individuals. Checking
model assumptions and assessing the fit of models to data are routine in
statistical endeavors. In regression analysis, numerous procedures are
available for checking distributional assumptions, examining outliers,
and the fit of the chosen model to data. Some of these procedures have
been adapted for use in IRT. The basic problem in IRT is that the
regressor, θ, is unobservable; this fact introduces a level of complexity
that renders a procedure which is straightforward in regression analysis
inapplicable in the IRT context.

IRT models are based on a number of explicit assumptions, so methods
for the evaluation of model fit focus on these assumptions. Model fit can
be viewed from two perspectives: the items and the respondents. In the
first case, for every item, residuals (differences between predictions from
the estimated model and observations) and item fit statistics are
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computed to assess whether the item violates the model. The item fit
statistics can be used for evaluating the fit of the so-called manifest IRT
model (Holland, 1990). This class comprised statistics developed to be
sensitive to specific model violations (Andersen, 1973, Glas, 1988, 1997,
1998, 1999, 2005, Glas & Verhelst, 1989, 1995a, 1995b; Glas & Suárez-
Falcón, 2003; Holland & Rosenbaum, 1986; Kelderman, 1984, 1989;
Martin Löf, 1973, Mokken, 1971; Molenaar, 1983; Sijtsma & Meijer,
1992; Stout, 1987, 1990). In the second case, residuals and person fit
statistics are computed for every person to assess whether the responses
to the items follow the model. The person fit statistics focuses on the
appropriateness of the stochastic model on the level of the individual. For
this reason they are commonly called person-fit statistics. In the IRT
context several person fit statistics have been proposed that can be used
to detect individual item score patterns that do not fit the IRT model
(Drasgow, Levine, & Williams, 1985; Glas & Meijer, 2003; Meijer &
van Krimpen-Stoop, 1999; Klauer, 1995; Molenaar & Hoijtink, 1990;
Meijer, Molenaar & Sijtsma, 1994; Reise, 1995; Glas & Dagohoy, 2007).

IRT models can be evaluated by Pearson-type statistics, that is, statistics
based on the difference between observations and their expectations
under the null-model. However, these tests are rather global and give no
information with respect to specific model violations. Most of the
goodness-of-fit tests that have been proposed in literature are assumed to
have an asymptotic 2χ distribution (Orlando & Thissen, 2000). Glas and
Suárez-Falcón (2003) have pointed out that the asymptotic distributions
of these 2χ statistics are not known or questionable. These issues were
addressed using LM tests sketched by Glas (1998, 1999) in the marginal
maximum likelihood (MML) framework (see, for instance, Bock &
Aitkin, 1981; Mislevy, 1986). A related important issue is that fit
statistics are sensitive to sample size. They tend to reject the model even
for moderate sample sizes. Another issue is the effect size, that is, the
severity of the model violation. A related problem is defining a stopping
rule for the searching procedure for misfitting items. Effect size use is
important to assist with the avoidance of practically trivial but
statistically significant results, regardless of the detection method.

However, frequentist estimation methods, as for instance, MML are
complicated (in terms of computation) for multilevel and
multidimensional psychometric models (Fox & Glas, 2001; Béguin &
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Glas, 2001) due to the complex dependency structures of the models.
They require the evaluation of multiple integrals to solve the estimation
equations for parameters. Further, in the estimations of person
parameters, they fail to take into account the uncertainty about item
parameters when making inference on examinees’ ability parameters.
They may underestimate the uncertainty in abilities (Tsutakawa & Soltys,
1988; Tsutakawa & Johnson, 1990).

The above stated problems are avoided in a fully Bayesian framework
and now a days it’s being widely used for parameter estimation in
complex psychometric IRT models. When comparing the fully Bayesian
framework with the MML framework the following considerations play a
role. First, a fully Bayesian procedure supports definition of a full
probability model for quantifying uncertainty in statistical inferences
(see, for instance, Gelman, Carlin, Stern, & Rubin, 2004, p. 3). This does
involve the definition of priors, which creates some degree of bias, but
this can be minimized using of non-informative priors. Second, estimates
of model parameters that might otherwise be poorly determined by the
data can be enhanced by imposing restrictions on these parameters via
their prior distributions. However this can also be done in a Bayes modal
framework, which is closely related to the MML framework (Mislevy,
1986). Baker (1998) has investigated the recovery of item parameter
estimates using Gibbs sampling (Albert, 1992) and BILOG (Mislevy &
Bock, 1989). The item parameter recovery characteristics were
comparable for the largest dataset of 50 items and 500 examinees.
However, for short tests and sample sizes the item parameter recovery
characteristics of BILOG were superior to those of the Gibbs sampling
approach.

Recently Sinharay (2005), Sinharay, Johnson and Stern (2006) have
applied a popular Bayesian approach posterior predictive checks (PPCs)
for the assessment of model violations in unidimensioal IRT models.
However, Bayarri and Berger (2000) have showed that PPCs also comes
with problems due to twice use of data as a result PPP-values were
conservative (i.e., often failed to detect model misfit) and inadequate
behavior of posterior p-value. One of the research questions was to
compare the frequentist procedures (LM test) and Bayesian procedures
(PPCs) for evaluating of item fit in IRT models.
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One of the difficulties in the assessment of person fit is the fact that the
ability parameter of the examinee is unknown. The literature contains
many proposed person fit statistics which are functions of the unknown
ability parameter. The use of an estimated rather than the true value of
the ability parameter has an effect on the distribution of the person fit
statistic Snijders (2001). These estimates usually decrease the asymptotic
variance of most statistics proposed in the literature. Therefore, their
asymptotic distribution is usually unknown. To address this issue,
Snijders (2001) proposed a method for standardization of a specific class
of person fit statistics for dichotomous items, such that their asymptotic
distribution can be properly derived. Snijders (2001) applied a correction
for the mean and variance of zl and derived an asymptotic normal

approximation for the conditional distributions of zl when θ̂ is used in
its calculation. Glas and Dagohoy (2007) proposed an alternative
approach which is based on LM test. The one of major question that was
to describe and compare the person fit statistics that take in account
Snijders’ correction, LM tests, and Bayesian procedures (PPCs) for
evaluating goodness of fit in the unidimensional dichotomous IRT
models.

In recent years, confirmatory factor analytic (CFA) techniques have
become the most common method of testing for measurement
equivalence/invariance (ME/I) as alternative for IRT based procedures.
McDonald (1999) and Raju et al., (2002) have provide a comprehensive
review of the methodological similarities and differences among the CFA
and IRT. When conducting DIF studies using the CFA and IRT, there is a
variation in the way nested models are constructed. Unlike Bottom-up
approach, where the baseline model is typically one in which all
parameters except the referent are free to vary and an item is studied by
additionally constraining its parameters to be equal across groups, many
IRT researchers use the opposite approach which is, a Top-down
procedure. Specifically, a baseline model is constructed by constraining
the parameters for all items to be equal across groups and a series of
augmented models is formed by freeing the parameters for the studied
item(s), one at a time, and examining the changes in 2G (e.g., Thissen,
1991; Bolt, 2002). When this approach is used, it is not necessary to
specify a referent item for identifying the metric, because, in each
comparison, all items except the studied item are constrained. However,
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it is necessary to anchor the metric by choosing a reference group whose
latent mean is set to zero for parameter estimation.

The Bottom-up approach follows is motivated by following argument.
According to statistical theory (Maydeu-Olivares & Cai, 2006) for the
difference between a baseline model and constrained models to follow a
central chi-square distribution under the null hypothesis, the baseline
model has to fit the data. If the baseline model contains a number of DIF
items, then it might not fit adequately and DIF detection could be
adversely affected. Thus, from a statistical standpoint, the approach to
comparing nested models in Bottom-up approach is theoretically
appropriate, whereas the traditional Top-down approach implemented in
the IRT LR approach is not. Given the current variation in the way nested
models are constructed (Top-down and Bottom-up), the other research
question was to make a comprehensive comparative simulation study and
explored the factors that have impact on their performance.
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1.1 Overview of the Thesis

The chapters in this thesis are self-contained; hence they can be read
separately. Therefore, some overlap could not be avoided and the
notations, the symbols and the indices may slightly vary across chapters.

In Chapter 2, item bias or differential item functioning (DIF) is seen as a
lack of fit to an IRT model. It is shown that inferences about the presence
and importance of DIF can only be made if DIF is sufficiently modeled.
This requires a process of so-called test purification where items with
DIF are identified using statistical tests and DIF is modeled using group-
specific item parameters. In the present study, DIF is identified using a
Lagrange multiplier statistic. The first problem addressed is that the
dependency of these statistics might cause problems in the presence of
relatively large number DIF items. However, simulation studies show
that the power and Type I error rate of a step wise procedure where DIF
items are identified one at a time are good. The second problem pertains
to the importance of DIF, i.e., the effect size, and related problem of
defining a stopping rule for the searching procedure. Simulations show
that the importance of DIF and the stopping rule can be based on the
estimate of the difference between the means of the ability distributions
of the studied groups of respondents. The searching procedure is stopped
when the change in this effect size becomes negligible.

Chapter 3 presents the measures for evaluating the most important
assumptions underlying unidimensional item response models such as
subpopulation invariance, form of item response function, and local
stochastic independence. These item fit statistics are studied in two
frameworks. In a frequentist MML framework, LM tests for model fit
based on residuals are studied. In the framework of LM model tests, the
alternative hypothesis clarifies which assumptions are exactly targeted by
the residuals. The alternative framework is the Bayesian one. The PPCs
is a much used Bayesian model checking tool because it has an intuitive
appeal, and is simple to apply. A number of simulation studies are
presented that assess the Type I error rates and the power of the proposed
item fit tests of in both frameworks. Overall, the LM statistic performs
better in terms of power and Type I error rates.
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Chapter 4 presents fit statistics that are used for evaluating the degree of
fit between the chosen psychometric model and an examinee’s item score
pattern. Person fit statistic reflects the extent to which the examinee has
answered test questions according to the assumptions and description of
the model. Frequentist tests as the LM test and tests with Snijders’
correction (which take into account the estimation of ability parameter)
are compared with PPCs. Simulation studies are carried out using a
number of fit statistics in a number of combinations in both frameworks.

In Chapter 5, a method based on structural equation modelling (or, more
specifically, confirmatory factor analysis) for examining measurement
equivalence is presented. Top-down and Bottom-up approaches were
evaluated for constructing nested models. A comprehensive comparative
simulation study is carried out to explore the factors that have impact on
performance for detecting DIF items.
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A Step-Wise Method for Evaluation of
Differential Item Functioning

Abstract: Item bias or differential item functioning (DIF) has an
important impact on the fairness of psychological and educational
testing. In this paper, DIF is seen as a lack of fit to an item response
(IRT) model. Inferences about the presence and importance of DIF
require a process of so-called test purification where items with DIF are
identified using statistical tests and DIF is modeled using group-specific
item parameters. In the present study, DIF is identified using item-
oriented Lagrange multiplier statistics. The first problem addressed is
that the dependence of these statistics might cause problems in the
presence of a relatively large number of DIF items. A stepwise procedure
is proposed where DIF items are identified one or two at a time.
Simulation studies are presented to illustrate the power and Type I error
rate of the procedure. The second problem pertains to the importance of
DIF, i.e., the effect size, and related problem of defining a stopping rule
for the searching procedure for DIF. The estimate of the difference
between the means and variances of the ability distributions of the
studied groups of respondents is used as an effect size and the
purification procedure is stopped when the change in this effect size
becomes negligible.

This chapter has been submitted for publication as: M. N. Khalid and
Cees A. W. Glas, A Stepwise Method for Evaluation of DIF.
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2.1 Introduction

Differential item functioning (DIF) occurs when respondents with the
same ability but from different groups (say, gender or ethnicity groups)
have different response probabilities on an item of a test or questionnaire
(Embretson & Reise, 2000). Several statistical DIF detection methods
have emerged (Holland & Thayer, 1988; Muthen, 1988; Shealy & Stout,
1993; Swaminathan & Rogers, 1990; Thissen, Steinberg, & Wainer,
1988; Kelderman & Macready, 1990; Finch, 2005; Oort, 1998; Navas-
Ara & Gómez-Benito, 2002) and many reviews of DIF methods are
provided in the literature (e.g., Camilli & Shepard, 1994; Holland &
Wainer, 1993; Millsap & Everson, 1993; Roussos & Stout, 2004;
Penfield & Camilli, 2007). Most of the techniques for the detection of
DIF that have been proposed are based on evaluation of differences in
response probabilities between groups conditional on some measure of
ability. We consider two classes, the first class where a manifest score,
such as the number-correct score, is taken as a proxy for ability and a
second class where a latent ability variable of an IRT model functions as
an ability measure.

The most used method in the first class is the Mantel-Haenszel (MH)
approach where DIF is evaluated by testing whether the response
probabilities, given number-correct scores, differ between the groups.
Though the MH test works quite well in practice, Fischer (1993, 1995)
points out that its application based on the assumption that the Rasch
model holds, and when applying the MH test in other cases, several
theoretical limitations arise. Also in the log-linear approach manifest sum
scores are used as proxies for ability and the issues raised by Fischer
(1993, 1995; see also Meredith & Millsap, 1992) apply here as well. The
observed score is nonlinearly related to the latent ability metric
(Embretson & Reise, 2000; Lord, 1980), and factors such as guessing
may preclude an adequate representation of the probability of correct
response conditional on ability. However, in general the correlation
between the number-correct scores and ability estimates is quite high, so
this is not the most important reason for considering alternative methods.
The main problem arises in situations where the number-correct score
loses its value as a proxy for ability. One may think of test situations with
large amounts of missing data, or of computerized adaptive testing,
where every student is administered a virtually unique set of items.
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In an IRT model, ability is represented by latent variable θ, and a
possible solution to the problem is to apply the MH and log-linear
approach using subgroups that are homogenous with respect to an
estimate of θ. This, however, introduces the problem that the estimate of
θ is subject to estimation error, which is difficult to take into account
when forming the subgroups. An alternative is to view DIF as a special
case of misfit of an IRT model and to use the machinery for IRT model-
fit evaluation to explore DIF. An overview of this approach was given by
Thissen, Steinberg, and Wainer (1993). In that overview, evaluation of
item parameter invariance over subgroups using Likelihood ratio and
Wald statistics was presented as the main statistical tool for detection of
DIF. Glas (1998, 1999) argued that the Likelihood ratio and Wald
approach are not very efficient because they require estimation of the
parameters of the IRT model under the alternative hypothesis of DIF for
every single item. Therefore, Glas (1998, 1999) proposed using the
Lagrange multiplier (LM) test by Aitchison and Silvey (1958), and the
equivalent efficient-score test (Rao, 1948), which do not require
estimation of the parameters of the alternative model. Further, this
approach supports the evaluation of many more model assumptions such
as the form of the response function, unidimensionality and local
stochastic independence, both on the level of items (Glas & Falcon,
2003) and the level of persons (Glas & Dagohoy, 2007).

All methods listed above are seriously affected by the presence of high
proportions of DIF items in a test and by the inclusion of DIF items in
matching variable. Finch (2005) conducted a series of simulation to
compare the performance of MIMIC, the Mantel-Haenszel, the IRT
likelihood ratio test and the SIBTEST and found that an inflated Type I
error rate and deflated power when there were more than 20 % DIF items
in the test. To address this issue, many scale purification procedures have
been developed (Lord, 1980; Wang & Su, 2004a, 2004b; French &
Maller 2007). In the present chapter, an alternative purification method
using Lagrange multiplier tests is proposed.

Another issue is the importance of DIF, i.e., the extent to which the
inferences made using the test results are biased by DIF. Considering the
effect size of DIF is important to avoid complicating inferences by
practically trivial but statistically significant results. An example of a
method to quantify the effect size is the DIF classification system for use
with the MH statistical method developed by the Educational Testing
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Service (Camilli & Shepard, 1994; Clauser & Mazor, 1998). In the
framework of IRT, the present paper proposes to use an estimate of the
difference between the means of the ability distributions of the studied
groups of respondents as an effect size. This is motivated by the fact that
ability distributions play an important role in most inferences made using
IRT, such as in making pass/fail decisions, test equating, and the
estimation of linear regression models on ability parameters as used in
large scale educations surveys (NEAP, TIMSS, PISA).

This study is organized as follows. First, the modeling of DIF and a
concise frame work of LM test is sketched for the identification of misfit
items. Next, an example using empirical data is presented to show how
the procedure works in practice. Then a number of simulation studies of
the Type I error rate and power are presented. Next, the difference
between two versions of the LM test, one targeted at uniform DIF and
one targeted at non-uniform DIF is shown using a simulated example.
Finally, some conclusions are drawn, and some suggestions for further
research are given.

2.2 Detection and Modeling of DIF

In IRT models, the influences of items and persons on the observed
responses are modeled by different sets of parameters. Since DIF is
defined as the occurrence of differences in expected scores conditional
on ability, IRT modeling seems especially fit for dealing with this
problem. In practice, more than one DIF item may be present, and
therefore, a stepwise procedure will be proposed where DIF items are
identified one or two at a time. Both the significance of the test statistics
and the impact of DIF are taken into account. Below, the following
procedure will be outlined. First, marginal maximum likelihood (MML)
estimates of the item parameters and the means and variance parameters
of the different groups of respondents are made using all items. Then the
item is identified with the largest significant value on a Lagrange
multiplier (LM) test statistic targeted at DIF. To model the DIF in this
item, the item is given group-specific item parameters. That is, in the
analysis, the item is split into two virtual items, one that is supposed to be
given to the focal group and one that is supposed to be given to the
reference group. Then, new MML estimates are made and the impact of
DIF in terms for the change in the means and variances of the ability
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distributions is evaluated. If this change is considered substantial, the
next item with DIF is searched for. The process is repeated until no more
significant or relevant DIF is found. The assumptions of this procedure
are that (1) the item which is mostly affected by DIF will have the largest
value of the LM statistic regardless of the bias caused by the other items
with DIF, and (2) the change in the means and variances of ability
distributions will decrease when the items with the DIF are given group
specific item parameters one or two at a time.

2.2.1 IRT Models

In the present study, we both consider dichotomously and polytomously
scored items. For dichotomously scored items, the one-parameter logistic
model (1PLM) by Rasch (1960), the two-parameter logistic model
(2PLM) and the three-parameter logistic model (3PLM) by Birnbaum
(1968) will be used. For polytomously scored items, we use the
generalized partial credit model (GPCM, Muraki, 1992). However, the
methods proposed here also apply to other models for polytomously
scored items, such as the PCM by Masters (1982) or the nominal
response model by Bock (1972).

In the 3PLM, the item is characterized by a difficulty parameter βi, a
discrimination parameter αi and a guessing parameter γi. Further, θn is the
latent ability parameter of respondent n. The probability of correctly
answering an item (denoted by X 1ni = ) is given

exp( ( ))
( X 1 | ) ( ) (1 )  .

1 exp( ( ))ni n i i
i n i

i n
i n i

P P
α θ βθ θ γ γ

α θ β
−

= = = + −
+ −

(2.1)

If the guessing parameter γi is constrained to zero the model reduces to
the 2PLM and if also the discrimination parameter iα is constrained to
one the model reduces to the 1PLM.

DIF pertains to different response probabilities in different groups. Here
we consider two groups labeled the reference group and the focal group.
The generalization to more than two groups is straightforward.
A background variable will be defined by
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1 if person n belongs to the focal group,

0 if person n belongs to the reference group.ny
⎧

= ⎨
⎩

As a generalization of the model defined by equation 2.1 we consider

exp( ( ) ( ( )))
( ) (1 )  .

1 exp( ( ) ( ( )))i i
i n i n i n i

i n
i n i n i n i

y
P

y

α θ β φ θ δθ γ γ
α θ β φ θ δ

− + −
= + −

+ − + −
(2.2)

This model implies that the responses of the reference population are
properly described by the model given by equation 2.1, but that the
responses of the focal population need additional location parameters iδ ,

additional discrimination parameters iφ , or both given by equation 2.2.
The first instance covers so-called uniform DIF, that is, a shift of the item
response curve for the focal population, while the later two cases are
often labeled non-uniform DIF, that is, the item response curve for the
focal population not only shifted, but it also intersects the item response
curve of the reference population.

For polytomous items, the GPCM by Muraki (1992) will be used. The
probability of a student n scoring in category j on item i (denoted by
X 1ni = ) is given by

1

exp( )
( X 1 | ) ( )  ,

1 exp( )i

i n ij
nij n ij n M

i n ihh

j
P P

h

α θ β
θ θ

α θ β
=

−
= = =

+ −∑
(2.3)

for j = 1,…, Mi. An example of the category response functions
( )ij nP θ for an item with four ordered response categories is given in

Figure 2.1. Further, the graph shows the expected item-total score

1 1

( | ) = ( | ) = ( ) .
i iM M

i ij ij
j j

E T jE X jPθ θ θ
= =
∑ ∑ (2.4)

where the item-total score is defined as
1

iM

i ij
j

T jX
=

=∑ . Note that the

expected item-total score increases as a function of θ . The generalization
of equation 2.2 can be easily extended for equation 2.3.
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Figure 2.1. Response functions and expected item-total score under the
GPCM.

2.2.2 MML Estimation

The LM test for DIF will be implemented in an MML estimation
framework. To describe the statistic, MML estimation will be outlined
first. MML estimation was developed by Bock and Aitkin (1981; see also
Bock & Zimowski, 1997; Rigdon & Tsutakawa, 1983; Mislevy, 1984,
1986). In the MML frame work adopted here, it is assumed that the
respondents belong to groups, and that ability parameters of the
respondents with in a group have a normal distribution indexed by a
group specific-mean and variance parameter. Let ( )( ; )n y ng θ λ be the

density of ability distribution of group y, with parameters ( )y nλ where

y(n) = yn, i.e., the index of the group to which respondent n belongs.
Usually, to identify the model, the mean and variance of one of the
groups are set to zero and unity, respectively. Further, let ξ be a vector
that contains all the item parameters. Finally, η is the vector of all item
parameters ξ and the parameters λ of the ability distributions. The log
likelihood function of η can be written as
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( )
1

) log ( | , ) ( ; )  .log (
N

n n y n
n

n np g dL θ θ θ
=

=∑ ∫η x ξ λ (2.5)

where ( | , )n np θx ξ is the probability of response pattern xn of respondent
n (n = 1,…, N). The estimation equations that maximize the log-
likelihood are found by setting the first-order derivatives of equation 2.5
with respect to η equal to zero. Glas (1999) shows that expressions for
the first-order derivatives can be derived using Fischer’s identity (Efron,
1977; Louis, 1982):

[ ]log ( ) ( ) | ;n n
n

L E ω η∂
=

∂ ∑η η x
η

(2.6)

with

( )( ) log ( | , ) ( ; )  .n n n y nnp gω θ θ∂
⎡ ⎤= ⎣ ⎦∂

η x ξ
η

λ

The expectation in equation 2.6 is with respect to the posterior
distribution ( )( | ; , )n n y np θ λx ξ . That is, the first order derivatives are equal

to the posterior expectations of the first order derivatives of a likelihood
function where the ability parameters are treated as observations. This
grossly simplifies the derivations of the likelihood equations because

( )nω η is very simple to derive. As an example we derive the MML
estimate for the mean of the ability distribution of the focal group, that is,
the group of respondents where yn = 1. The distribution of the ability
parameters is normal, so if the values of nθ would be known, the

estimation equation ( ) 0n
n

ω =∑ η would be equivalent to

1

1

 .

N

n nn
N

nn

y

y

θ
μ =

=

= ∑
∑

By Fisher’s identity as given in equation 2.6, the MML estimation
equation becomes

[ ]
1

1

| ;
 .

N

n n nn
N

nn

y E

y

θ η
μ =

=

= ∑
∑

x
(2.7)
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Below, this identity will prove very helpful in the interpretation of the
LM test for DIF.

2.2.3 A Lagrange Multiplier Test for DIF

In IRT, test statistics with a known asymptotic distribution are very rare.
The advantage of having such a statistic available is that the test
procedure can be easily generalized to a broad class of IRT models.
Therefore, in the present article, the testing procedure will be based on
the Lagrange multiplier test. In 1948, Rao introduced a testing procedure
based on the score function as an alternative to likelihood ratio and Wald
tests. Silvey (1959) rediscovered the score test as the Lagrange multiplier
(LM) test. The LM test (Aitchison & Silvey, 1958) is equivalent with the
efficient-score test (Rao, 1948) and with the modification index that is
commonly used in structural equation modeling (Sörbom, 1989).
Applications of LM tests to the framework of IRT have been described
by Glas (1998, 1999), Glas and Falcon (2003), Jansen and Glas (2005),
and Glas and Dagohoy (2007).

To identify DIF as defined by the model given in equation 2.2, we test
the null hypothesis 0iφ = and 0iδ = using the statistic given by

-1LM =  ,'h W h (2.8)

where h is a 2-dimensional vector with as elements the first order
derivatives of the likelihood function with respect to iφ and iδ ,
respectively. W is the 2 x 2 covariance matrix of h. The statistic is
evaluated in the point 0iφ = and 0iδ = using MML estimates under the
null model, that is, using the MML estimates of the 2PLM or 3PLM. The
idea of the test is that if the absolute values of these derivatives are large,
the parameters fixed to zero will change if they are set free. In that case,
the test becomes significant and the IRT model under the null hypothesis
is rejected because of the presence of DIF. If the absolute values of these
derivatives are small, the fixed parameters will probably show little
change should they be set free. It means that the test is not significant and
the IRT model under the null hypothesis is adequate.
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For the null hypothesis 0iφ = and 0iδ = , LM has an asymptotic chi-
square distribution with two degrees of freedom. Details about the
computation of W can be found in Glas (1998). The advantage of using
the LM test instead of the analogous likelihood ratio or Wald tests is that
only the null model, that is the 2PLM or 3PLM, has to be estimated, and
using these estimates, a whole range of model violations can be
evaluated, including DIF for all items, violations of local independence,
multidimensionality and the form of the response functions (Glas, 1999).

As a special case, consider the alternative model given by equation 2.2,
in the 2PLM version, that is, with 0iγ = , and with 0iφ = . Then the
probability of a correct response becomes

exp( ( ) )
( )  .

1 exp( ( ) )
i n i n i

i n
i n i n i

y
P

y

α θ β δθ
α θ β δ

− +
=

+ − +
(2.9)

If we treat ,i iα β and nθ as known constants this is an exponential family

model with parameter iδ . It is well known that the first order derivative
of an exponential family likelihood is the difference between the
sufficient statistic and its expectation (see, for instance, Andersen, 1980).
The parameter iδ in equation 2.9 is an item difficulty parameter
pertaining to the subgroup with yn = 1. The sufficient statistic for an item
difficulty parameter is the number-correct score. So conditional on nθ the
first order derivative is

1 1

( ) ,
N N

n ni n
n n

i ny x y P θ
= =

−∑ ∑

and using Fishers identity as given in equation 2.6 results in

1 1

[ ( ) | ; ] .
N N

n ni n n
n n

i ny x y E P θ
= =

−∑ ∑ x η

So the statistic is based on residuals, that is, on the difference between
the number-correct score in the focal group and its posterior expected
value.
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A DIF statistic for polytomously scored items based on residuals can be
constructed analogously. To create a test based on the differences
between item-total scores in subgroups and their expectations, a model is
defined where the item-total score is a sufficient statistic, that is,

1

exp( )
( )  .

1 exp( )i

i n ij n i
ij n M

i n ih n ih

j y j
P

h y h

α θ β δ
θ

α θ β δ
=

− +
=

+ − +∑
(2.10)

Note that
1

iM

i n ij
j

T y jX
=

=∑ is a sufficient statistic for iδ .  Therefore, an LM

test for the null hypothesis 0iδ = will be based on the residuals

1 1 1 1

- ( | ; )  .
i iM MN N

n ij n ij n
n j n j

y jX y jE P
= = = =
∑∑ ∑∑ x η (2.11)

An example will be given in the next section.

2.3 An Empirical example

The example pertains to the scale for ‘Attitude towards English Reading’
which consisted of 50 items with five response categories of each. The
scale was administered to 8th grade students in a number of elementary
schools of Pakistan. The respondents were divided into two groups on the
basis of gender. The sample consisted of 1080 boys and 1553 girls. The
item parameters were estimated by MML assuming standard normal
distributions for the θ-parameters of both groups.

Table 2.1 gives the results for the LM test of the hypothesis 0iδ = . The
results pertain to the first 14 items plus the 6 items with the most
significant results in the remaining 36 items. The column labeled ‘LM’
gives the values of the LM-statistics; the column labeled ‘Prob’ gives the
significance probabilities. The statistics have 1 degree of freedom. 10 of
the 50 LM-tests were significant at a 5% significance level. The observed
item-total scores (first term in equation 2.11) and expected item-total
scores (second term in equation 2.11) averaged over the two groups are
shown under the headings ‘Obs’ and ‘Exp’, respectively. To get an



20 2. A Step-wise Method for DIF

impression of the effect size of the misfit, the mean absolute difference
between the observed and expected item-total scores are given under the
heading “Abs.Diff”. The observed and expected values were quite close:
the mean absolute difference was approximately .02 and the largest
absolute difference was .19. This analysis was the starting point for the
iterative procedure of identification and modeling of DIF. The item with
the largest LM value, Item 37, was split into two virtual items, one that
was supposed to be given to the boys and one that was supposed to be
given to the girls, new MML estimates were made and the next item with
the largest DIF was identified. Figure 2.2 gives the history of the
procedure over iterations in terms of the difference between the estimates
of the means of the ability distributions of the boys and girls as obtained
using the MML estimates. The mean of the ability distribution of the girls
was set equal to zero to identify the model, so the values displayed in
Figure 2 are the averages for the boys, together with a confidence
interval. Note that the initial change is quite large and the change
decreases over iterations. The change of the variance of the ability
distributions over iterations was very small.

0
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Figure 2.2. Change in the estimates of the means of the ability
distribution over iterations.

A conservative conclusion is to stop the modeling DIF after six items
because the impact on the estimates of the ability distribution, and
inferences made using these distributions, such as norming and equating,
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became negligible.

Table 2.1. The results of LM test to evaluate fit of DIF.
Boys Girls

Item LM Prob Obs Exp Obs Exp Abs.Diff
1 1.09 0.30 2.75 2.70 2.49 2.52 0.04
2 0.95 0.33 3.28 3.25 3.05 3.07 0.03
3 2.70 0.10 3.23 3.18 2.94 2.98 0.04
4 6.20 0.01 3.26 3.19 2.91 2.96 0.06
5 2.45 0.12 2.70 2.76 2.65 2.60 0.05
6 3.40 0.07 3.27 3.21 2.97 3.01 0.05
7 1.02 0.31 3.13 3.16 2.97 2.95 0.02
8 2.88 0.09 2.93 2.98 2.76 2.72 0.05
9 0.40 0.53 3.11 3.13 2.91 2.89 0.02

10 0.03 0.86 2.99 2.98 2.79 2.79 0.01
11 0.20 0.65 2.67 2.65 2.44 2.46 0.02
12 0.68 0.41 3.05 3.08 2.91 2.90 0.02
13 3.28 0.07 3.32 3.27 3.00 3.03 0.04
14 2.81 0.09 2.78 2.84 2.71 2.67 0.05
25 8.50 0.00 3.02 3.11 2.95 2.88 0.08
30 8.26 0.00 3.32 3.23 2.96 3.02 0.07
33 4.51 0.03 3.14 3.08 2.81 2.85 0.06
37 20.18 0.00 1.87 2.09 2.01 1.86 0.19
41 14.21 0.00 2.30 2.48 2.41 2.28 0.15
50 5.13 0.02 3.44 3.38 3.15 3.20 0.06

2.4 Design of Simulation Studies

The first simulation studies presented concern the LM test targeted at
uniform DIF, that is, the test for the null-hypothesis 0iδ = . The LM test

targeted at non-uniform DIF, that is the test for the null hypothesis 0iφ =

and 0iδ = will be treated in a next section. The simulations pertain to the
1PLM, the 2PLM and the 3PLM for dichotomous items. The Ability
parameters were drawn from a standard normal distribution. For the
3PLM studies, data were generated using guessing parameters fixed at
0.2. The item discrimination parameters were drawn from a log-normal
distribution with a mean equal to 1.0 and a standard deviation equal to
0.5 and the item difficulty parameters were drawn from standard normal
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distribution, except for the items with DIF. For the latter items, the
discrimination and difficulty parameters were fixed to one and zero,
respectively. This was done to prevent extreme parameter values when
the effect size iδ was added. Effect sizes were 0iδ = , 0.5iδ = and

1.0iδ = . Test length was varied as K = 10, K = 20, and K = 40 and the
sample sizes were N = 100, N = 400, and N= 1000 per group. The
number of DIF items was varies as 0%, 10%, 20%, 30% and 40% of the
test length. 100 replications were made in each condition of study. In all
studies a nominal significance level of 5 % was used. The Type I error
rates were evaluated by the proportion of times in the course of 100
replications a DIF-free item was mistakenly identified as exhibiting DIF.
The power of the test was determined by the proportion of times in the
course of 100 replications a DIF item was correctly identified. In the
present example, the stepwise procedure consisted of four steps where
two significant items (if present) were given group-specific item
parameters in each step, so the changes in the means and variances of
ability distributions were considered here as a stopping rule. The changes
will be studied in the next section.

2.5 Results

2.5.1 Type I Error Rates

Table 2.2 summarizes the performance of LM test as function of sample
size, test length, effect size, and the number of misfit items. The column
labeled 0% gives the Type I error rate when no DIF items are present.
The Type I error rate approached the nominal significance level in all
settings of a sample size of N = 400 and N = 1000 for the test lengths K
=20 and K = 40. In the presence of DIF items, the control of Type I error
rate deteriorated for a test length of 10 items with 30% or 40% DIF
items. It must be noted that 40% items with DIF is very high. If this
percentage were equal to 50%, it cannot even be logically decided which
one of the two parts of the test has DIF. So the conclusion is that the
control of Type I error is good for reasonable test lengths (K = 20 and K
= 40) combined with a reasonable sample size (say, 400 or more), or for
a short test length (K = 10) with less than 20% DIF items. The results for
the 1PLM and the 3PLM were analogous.
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2.5.2 Power of the Test

Table 2.3 and 2.4 show results of the estimated power of test in the same
simulation as in the previous section, for the 2PLM and the 3PLM,
respectively. The results for the 1PLM are not shown, because they
where very close to and not statistically different from the results for the
2PLM. Note that the tables show the expected main effects of sample
size, test length, and effect size of DIF. If we disregard combinations of
test length and sample size that have already been disqualified in the
Type I error study reported above, it can be seen that the power of the
procedure was high and for some combinations equal to 1.0. The power
for the 3PLM was substantially lower than the power for the 2PLM.

Table 2.2. The Type I error rates by test length, effect size and sample
size under the 2PLM.

Percentage of Items with DIF
K δ N 0% 10% 20% 30% 40%
10 0.5 100 0.06 0.07 0.08 0.09 0.13

400 0.06 0.04 0.06 0.09 0.20
1000 0.04 0.05 0.05 0.08 0.32

1.0 100 0.08 0.08 0.16 0.34
400 0.04 0.05 0.12 0.47
1000 0.05 0.04 0.11 0.55

20 0.5 100 0.08 0.09 0.08 0.10 0.09
400 0.05 0.06 0.05 0.07 0.06
1000 0.06 0.06 0.06 0.05 0.03

1.0 100 0.08 0.08 0.08 0.07
400 0.06 0.05 0.05 0.04
1000 0.05 0.06 0.05 0.03

40 0.5 100 0.13 0.15 0.15 0.15 0.15
400 0.06 0.07 0.07 0.07 0.06
1000 0.06 0.06 0.04 0.06 0.04

1.0 100 0.15 0.14 0.11 0.09
400 0.07 0.06 0.05 0.05
1000 0.05 0.06 0.05 0.04
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Table 2.3. The Power of test by test length, effect size and sample size
under the 2PLM.

Number of Item with DIF
K δ N 10% 20% 30% 40%
10 0.5 100 0.33 0.28 0.21 0.17

400 0.81 0.85 0.70 0.52
1000 1.00 1.00 0.96 0.63

1.0 100 0.81 0.77 0.60 0.40
400 1.00 1.00 0.91 0.45

1000 1.00 1.00 0.93 0.37
20 0.5 100 0.42 0.40 0.38 0.39

400 0.89 0.84 0.83 0.84
1000 1.00 0.99 1.00 0.99

1.0 100 0.84 0.89 0.87 0.87
400 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00
40 0.5 100 0.54 0.52 0.47 0.48

400 0.88 0.87 0.86 0.87
1000 1.00 1.00 1.00 1.00

1.0 100 0.94 0.92 0.94 0.89
400 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00

The results show that the proposed method compares favorably with
alternative scale purification methods. Hulin, Lissak, and Drasgow
(1982) conclude that scale purification procedures suffer when there is
more than 20% DIF contamination in the test. In line with their findings,
samples of 100 are insufficient for conducting a test with reasonable
power and Type I error rate characteristics.

2.5.3 DIF and Population Parameters

The second aim of the study was to address the issue of importance of
DIF, i.e., the effect size, and related problem of defining a stopping rule
for the searching procedure. The associated formal test of model fit based
on a statistic with a known (asymptotic) distribution is only relevant for
moderate sample sizes; for large sample sizes, these tests become less
interesting, because their power then becomes so large that even the
smallest deviations from the model become significant. In these cases,
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the effect size becomes more important than the significance probability
of the test. The location of the latent scale can be identified by setting the
mean of the ability distribution of the reference population equal to zero.
In addition, to identify the 2PLM and 3PLM, the variance of the
reference population can be set equal to 1.0.

Table 2.4. The Power of test by test length, effect size and sample size
under the 3PLM.

Number of Item with DIF
K δ N 10% 20% 30% 40%
10 0.5 100 0.18 0.10 0.05 0.05

400 0.80 0.58 0.48 0.30
1000 1.00 0.98 0.68 0.44

1.0 100 0.72 0.50 0.29 0.12
400 1.00 1.00 0.70 0.35

1000 1.00 1.00 0.83 0.37
20 0.5 100 0.25 0.13 0.11 0.09

400 0.80 0.76 0.70 0.62
1000 1.00 1.00 0.97 0.89

1.0 100 0.78 0.62 0.58 0.52
400 1.00 1.00 0.99 0.95

1000 1.00 1.00 1.00 1.00
40 0.5 100 0.30 0.20 0.20 0.20

400 0.86 0.76 0.77 0.76
1000 1.00 1.00 1.00 1.00

1.0 100 0.75 0.65 0.59 0.56
400 1.00 1.00 1.00 1.00

1000 1.00 1.00 1.00 1.00

In the stepwise procedure defined above an identified DIF item is given
group specific item parameters and new MML estimates of the item
parameters and the parameters of the ability distribution are made. In the
present case, the relevant ability distribution parameters are those of the
focal population. It is assumed that the change in the estimates between
steps gives an indication of the importance of the identified DIF.
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Table 2.5. Estimates of the mean of the ability distribution in the
different steps of the purifications procedure (test length K = 20).
δ N DIF

items
Step 0 Step 1 Step 2 Step 3 Step 4

0.5 100 10% -0.033 -0.025
20% -0.036 -0.031 -0.037
30% -0.067 -0.051 -0.063 -0.055
40% -0.085 -0.075 -0.072 -0.079 -0.066

400 10% -0.015 0.001
20% -0.051 -0.027 -0.009
30% -0.054 -0.030 -0.013 0.002
40% -0.090 -0.069 -0.048 -0.028 -0.010

1000 10% -0.023 0.001
20% -0.043 -0.019 0.001
30% -0.069 -0.044 -0.021 0.000
40% -0.094 -0.069 -0.044 -0.020 0.000

1.0 100 10% -0.035 -0.000
20% -0.096 -0.055 -0.016
30% -0.136 -0.091 -0.061 -0.026
40% -0.150 -0.103 -0.056 -0.017 0.012

400 10% -0.026 0.017
20% -0.095 -0.046 -0.004
30% -0.137 -0.088 -0.043 -0.003
40% -0.214 -0.163 -0.113 -0.065 -0.023

1000 10% -0.046 -0.002
20% -0.102 -0.056 -0.013
30% -0.129 -0.083 -0.038 0.005
40% -0.194 -0.145 -0.098 -0.051 -0.005

Average standard errors for the estimates: N = 100 : Se(Mean) = 0.180,
N = 400 : Se(Mean) = 0.075, N = 1000 : Se(Mean) = 0.055

Table 2.5 gives the change in the estimate of the mean of the ability
distribution of the focal ability distribution for one of the settings of the
simulations reported above. The table pertains to the 2PLM and a test
length of 20 items. The estimates are averages over 100 replications. The
average standard errors of the estimates over 100 replications are
reported at the bottom of the table for all three sample sizes. In every
step, items identified with DIF were given group specific item-
parameters two at a time.
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The column labeled ‘Step 0’ gives the estimates of the means in the
initial MML analysis, where no items were treated yet. The true means
were all equal to zero, so it can be seen that there was a clear main-effect
of the percentage of DIF items present. Further, it can be seen that in the
final step of the procedure the estimates approach the true value of zero.
In practice, the true value is of course not known, and therefore the
convergence of the procedure must be judged from the differences in the
estimates between steps. In the present example, only uniform DIF was
generated and as a consequence, there was no systematic trend in the
estimates of the variances of the ability distributions. All estimates were
sufficiently close to the true value of 1.0. As will become clear in the
next section, this no longer holds when non-uniform DIF is present.

2.5.4 Non-uniform DIF

In the previous sections, the focus was on uniform DIF. In the present
section, a simulated example of non-uniform DIF is presented. In non-
uniform DIF, usually both the difficulty and discrimination parameters
differ between groups. Using same setup as in the previous simulations, a
dataset of 20 items was simulated using the 2PLM. DIF was imposed on
the first 6 items of the test by choosing 0.50iφ = − and 0.50iδ = . So in
the focal group the discrimination parameters of the DIF items were
lowered from 1.0 to 0.5 and the item difficulties rose from 0.0 to 0.5.
This might reflect the situation where the respondents of the focal group
were less motivated to make an effort on these items, which resulted in a
lower probability of a correct response and an attenuated relation
between the responses and the latent ability dimension. One of the
questions of interest was the relation between the test targeted at uniform
DIF (null-hypothesis 0iδ = ) and test targeted at non-uniform DIF (null-

hypothesis 0iφ = and 0iδ = ). The results are shown in Table 2.6. The
columns 3 to 5 pertain to the first MML analysis where none of the items
were given group-specific item parameters yet, the columns 6 to 9 pertain
to the situation after the third step when 6 items where identified as DIF
items. Note that all 6 items were correctly identified, even though also
the test for item 7 was highly significant in the first analysis. The
columns under the label ‘df = 1’ concern the test for 0iδ = , which has
one degree of freedom; the columns under the label ‘df = 2’ refer to the
test for 0iφ = and 0iδ = , which has two degrees of freedom. Note that
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overall the test with one degree of freedom seems to have a higher
power: in 19 cases its significance probability is lower than the
significance probability of the test with two degrees of freedom. The
latter test has the lowest significance probability in 8 cases. So in
practice, the test with two-degrees of freedom will not add much
information over the test with one degree of freedom.

Finally, at the bottom of the table, the estimates of the mean and standard
deviation of the ability distribution of the focal group are given, together
with the standard errors. It can be seen that in the initial analysis (Step 0)
both the estimate of the mean and the variance were biased. However,
after three steps the estimate of the variance is very close to its true value
of 1.0 and the estimate of the mean is clearly within the confidence
region around 0.0. So in this case, the change in both parameters must be
considered to judge the convergence of the procedure.

2.6 Discussion and Conclusion

IRT is widely applied in the field of educational and psychological
testing for such topics as the evaluation of the reliability and validity of
tests, optimal item selection, computerized adaptive testing, developing
and refining exams, maintaining item banks, and equating the difficulty
of successive versions of examinations. However, these applications
assume that the IRT models used hold. The presence of misfitting items
may potentially threaten the realization of the advantages of IRT models.
Therefore, over the course of the past decades the topic of model-fit has
become of more and more interest to test developers and measurement
practitioners. DIF is one of the most important threats to IRT model fit. A
method for the analysis of DIF was proposed that addresses two issues.
The first issue is that the presence of a large number of items with DIF
biases statistical search procedures for DIF. Therefore, a stepwise
purification procedure was introduced that consisted of alternating
between identifying DIF using an LM test and modeling DIF using
group-specific item parameters. The second issue is the importance of
DIF and the related issue of when to stop searching for DIF and modeling
DIF. It was argued that many applications of IRT entail inferences about
the latent ability distribution. One may think of norming and standard
setting, linking and equating, the estimation of group differences and
linear regression models on ability parameters as used in large scale



2.6 Discussion and Conclusions 29

educations surveys. Therefore, the importance of DIF was related to
ability distributions and it was suggested to monitor the purification
procedure using the change of the estimates of the parameters of the
ability distributions over the steps of the procedure.

Table 2.6. A comparison of the purification process using the LM tests
for uniform and non-uniform DIF.

Item Start Purification Procedure
(Step 0)

End Purification Procedure
(Step 3)

df = 1 df = 2 df = 1 df = 2
LM Prob LM Prob LM Prob LM Prob

1 5.46 .02 8.22 .02 - - - -
2 6.51 .01 9.65 .01 - - - -
3 6.71 .01 10.59 .01 - - - -
4 7.89 .00 11.84 .00 - - - -
5 2.39 .12 6.00 .05 - - - -
6 14.34 .00 20.23 .00 - - - -
7 7.37 .01 9.56 .01 3.09 .08 3.36 .19
8 0.11 .74 0.19 .91 1.89 .17 2.13 .34
9 2.20 .14 3.46 .18 0.09 .77 0.09 .95
10 0.20 .65 8.02 .02 0.17 .68 3.87 .14
11 2.43 .12 2.60 .27 0.26 .61 0.61 .74
12 0.07 .79 0.47 .79 1.44 .23 1.47 .48
13 1.19 .28 1.19 .55 0.01 .94 0.50 .78
14 0.12 .73 0.48 .79 1.52 .22 1.54 .46
15 3.02 .08 3.54 .17 0.79 .37 0.79 .67
16 0.97 .32 1.97 .37 0.00 .95 0.08 .96
17 0.64 .42 0.66 .72 0.05 .82 1.68 .43
18 2.10 .15 3.51 .17 0.29 .59 0.47 .79
19 2.11 .15 2.13 .34 0.12 .73 0.65 .72
20 0.43 .51 4.94 .08 0.02 .89 1.48 .48

Mean -.237 Mean -.111

SE(Mean) 0.078 SE(Mean) 0.084

SD 0.823 SD 0.985
SE (SD) 0.061 SE (SD) 0.080
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Simulation studies were presented to assess the Type I error rate and
power of the procedure. It was concluded that the procedure worked well
for sample sizes from 400 respondents and test lengths from 20 items.
For a test length of 10 items, the procedure only worked well when the
proportion of DIF items was 10% and 20%. In all situations, the power
decreased with the proportion of DIF items. The power for the 3PLM
was less than the power for the 2PLM. Further, for the case of uniform
DIF, it was shown that DIF biased the estimates of the means of the
ability distributions, but this bias vanished in the course of the stepwise
purification procedure when DIF was modeled by the introduction of
group-specific item parameters. In the case of non-uniform DIF, both the
means and variances of the ability distributions were biased, but also this
bias could be removed with group-specific item parameters. Further, the
simulation studies also showed that the LM test targeted at uniform DIF
was sufficiently sensitive to a combination of uniform and non-uniform
DIF, and the inferences did not change when the LM test for non-uniform
DIF was used.
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Assessing Item Fit: A Comparative Study of
Frequentist and Bayesian Frameworks

Abstract: Item fit indices for item response theory (IRT) models in a
frequentist and Bayesian framework are compared.  The assumptions that
are targeted are differential item functioning (DIF), local independence
(LI), and the form of the item characteristics curve (ICC) in the one-,
two-, and three parameter logistic models. It is shown that Lagrange
multiplier (LM) tests, which is a frequentist based approach, can be
defined in such a way that the statistics are based on the residuals, that is,
differences between observations and their expectations under the model.
In a Bayesian framework, identical residuals are used in posterior
predictive checks. In a Bayesian framework, it proves convenient to use
normal ogive representation of IRT models. For comparability of the two
frameworks, the LM statistics are adapted from the usual logistic
representation to normal ogive representation. Power and Type I error
rates are evaluated using a number of simulation studies. Results show
that Type I error rate and power are conservative in the Bayesian
framework and that there is more power for the fit indices in a frequentist
framework. An empirical data example is presented to show how the
frameworks compare in practice.

This chapter has been submitted for publication as: Cees A. W. Glas and
M.N. Khalid, Assessing Item Fit: A Comparative Study of Frequentist
and Bayesian Frameworks.
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3.1 Introduction

Psychometric theory is the statistical framework for measurement in
many fields of psychology and education. These measurements may
concern abilities, personality traits, attitudes, opinions, and achievement.
Item response theory (IRT) models play a prominent role in
psychometric theory. In these models, the properties of a measurement
instrument are completely described in terms of the properties of the
items, and the responses are modeled as functions of item and person
parameters. While many of the technical challenges that arise when
applying IRT models have been resolved (e.g., model parameter
estimation), the assessment of model fit remains a major hurdle for
effective IRT model implementation (Hambleton & Han, 2005).

Model checking, or assessing the fit of a model, is an important part of
any data modeling process. Before using the model to make inferences
regarding the data, it is crucial to establish that the model fits the data
well enough according to some criteria. In particular, the model should
explain aspects of the data that influence the inferences made using the
IRT model. Otherwise, the conclusions obtained using the model might
not be relevant. IRT models are based on a number of explicit
assumptions, so the method for the evaluation of model fit focus on these
assumptions. The most important assumptions underlying these models
are subpopulation invariance (DIF), the form of the ICC, local stochastic
independence, and item score pattern. Researchers have proposed a
significant number of fit statistics for assessing fit of IRT models. These
statistics were developed to be sensitive to specific model violations
(Andersen, 1973; Glas, 1988, 1999; Jansen & Glas, 2005; Glas &
Verhelst, 1995a, 1995b; Glas & Suárez-Falcón, 2003; Holland &
Rosenbaum, 1986; Kelderman, 1984, 1989; Maydeu-Olivares & Joe,
2005, 2006; Mokken, 1971; Molenaar, 1983; Sijtsma & Meijer, 1992;
Stout, 1987, 1990). An essential feature of these statistics is that they are
based on information that is aggregated over persons; therefore they will
be refer to as aggregate test statistics.

To date most of the research to IRT model fit procedures has been done
in a frequentist framework. Chi-square statistics are natural tests of the
discrepancy between the observed and expected frequencies or
proportions computed in a residual analysis. Both Pearson and likelihood
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ratio statistics have been proposed; these statistics have been standard
tools for assessing model fit since the earliest applications of IRT.

A number of problems arise in using chi-square statistics as tests of
model data fit in the IRT context. Principal among them is whether the
statistics have the chi-square distribution claimed and if so, whether the
degrees of freedom are correctly determined. Glas and Suárez-Falcón
(2003) note that the standard theory for chi-square statistics does not hold
in the IRT context because the observations on which the statistics are
based do not have a multinomial or Poisson distribution. Simulation
studies (Yen, 1981; McKinley & Mills, 1985; Orlando & Thissen, 2000,
2003) have shown that the fit statistics in common use do generally
appear to have an approximate chi-square distribution; however, the
number of degrees of freedom remains at issue. Orlando and Thissen
(2000) argued that because the definition of the observed proportions
correct are based on model-dependent trait estimates, the degrees of
freedom may not be as claimed. Stone and Zhang (2003) agreed with the
assessment of Orlando and Thissen (2000) and further noted that when
the expected frequencies depend on unknown item and ability
parameters, and when these are replaced by their estimates, the
distribution of the chi-square statistic is grossly affected. Glas and
Suárez-Falcón (2003) have also criticized these procedures along the
same lines for failing to take into account the stochastic nature of the
item parameter estimates. The model fit indices which are based on the
likelihood ratio and Wald statistics are also problematic (computational
intensive) because every alternative model for every model violation for
every person and each item would have to be estimated (Glas, 1999).

To address the above mentioned issues Glas (1999) has proposed
procedures based on the Lagrange multiplier (LM) statistic by Aitchison
and Silvey (1958). The LM statistics estimate the IRT model only once
and produce a number of tables of residuals that are informative with
respect to specific model violations. An advantage of the use of LM tests
is the necessity to formulate specific parametric alternatives to the
assumptions targeted by test statistics. Glas have sketched the approach
of LM test in the marginal maximum likelihood (MML) frame work (see,
for instance, Bock & Aitkin, 1981; Mislevy, 1986) which is the standard
procedure for parameter estimation in IRT. However, MML frame work
may be less efficient (in terms of computation) for multilevel and
multidimensional psychometric models (Fox & Glas, 2001; Béguin &
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Glas, 2001) due to complex dependency structures of models and require
the evaluation of multiple integrals to solve the estimation equations for
parameters.

These computational problems are avoided in a fully Bayesian
framework and now-a-days this framework is widely used for parameter
estimation in complex psychometric IRT models. When comparing the
fully Bayesian framework with the MML framework the following
considerations play a role. First, a fully Bayesian procedure supports
definition of a full probability model for quantifying uncertainty in
statistical inferences (see, for instance, Gelman, Carlin, Stern, & Rubin,
2004, p. 3). This does involve the definition of priors, which creates
some degree of bias, but this can be minimized using of non-informative
priors. Second, estimates of model parameters that might otherwise be
poorly determined by the data can be enhanced by imposing restrictions
on these parameters via their prior distributions. However this can also be
done in a Bayes modal framework, which is closely related to the MML
framework (Mislevy, 1986).

Recently Sinharay (2005), Sinharay, Johnson and Stern (2006) have
applied the popular Bayesian approach of posterior predictive checks
(PPCs) to the assessment of model violations in unidimensioal IRT
models. However, Bayarri and Berger (2000) have showed that PPCs
also comes with problems due to twice use of data as a result posterior p-
value were conservative (i.e., often failed to detect model misfit) and
inadequate behavior of posterior p-value.

The advantage of a Bayesian approach, particularly when implemented
through Markov chain Monte Carlo (MCMC) sampling from the
posterior distribution, is the easy calculation of the posterior distribution
of any function of the estimates. However, the frequentist approach has a
long standing, more rigorously developed tradition of statistical test for
model fit.  The purpose of this study is to introduce analogous frequentist
procedures (LM test) and Bayesian procedures (PPCs) and to compare
their Type I error rate and power.

This chapter is organized as follows. First, the model violations,
assumptions targeted by item fit statistics, that examined in this study are
presented. The second section introduces the description of LM statistics
and PPCs. The third section outlines the design of simulation studies.
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Next, results from a study comparing empirical Type I error rates and
power for the above frameworks are presented. Then, both frameworks
are applied in the context of an empirical example. Finally, some
conclusions are drawn, and some suggestions for further research are
given.

3.2 Fit to IRT Models

The fit of a model, or the correspondence between model predictions and
observed data, is generally regarded as an important property of model-
based procedures like IRT. When a model does not fit the data, valid use
of estimated parameters is compromised. IRT models are based on a
number of explicit assumptions which can be viewed from two
perspectives: the items and respondents. In the first case, for every item,
residuals (differences between predictions from the estimated model and
observations) and item fit statistics are computed to assess whether item
violates the model. In the second case, residuals and person fit statistics
are computed for every person to assess whether the responses to the
items follow the model.

For unidimensional IRT models, a number of item fit statistics may be of
interest, depending on the context of the problem. These models assume
item parameters invariance, a specific shape of the ICC, local
independence, fit of response pattern, and normality of the ability
distribution, and each of these assumptions should be checked using
suitable fit measures. The first assumption entails that the item responses
can be described by the same parameters in all possible subpopulations.
The shape of ICC describes the relation between the latent variable and
the observable responses to items. Evaluation is usually done by
comparing observed and expected item response frequencies given some
measure of latent trait level. The third assumption, local independence,
assumes that responses to different items are independent given the latent
trait variable value. The important assumption evaluated from the
perspective of person fit is the invariance of the ability parameter over
sub-tests.

In a Bayesian framework, the normal-ogive representation of IRT models
has a number of important computational advantages (Albert, 1992).
Since the objective of this article is to compare the Bayesian and the
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frequentist likelihood-based framework, we adopt the normal-ogive
representation and also apply it to the likelihood-based framework. In the
1- 2-, and 3-parameter models, it is assumed that the proficiency level of
a respondent (indexed n) can be represented by one dimensional
proficiency parameter nθ . In the 3PNO model the probability of correct

response to item i, denoted by Xni = 1, as a function of nθ is given by
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Note that (.)Φ is the cumulative standard normal distribution. The three

item parameters , ,i i ia b c are called the discrimination, difficulty and

guessing parameter, respectively. The 2PNO model follows upon setting
the guessing parameter ic equal to zero, and 1PNO model follows upon

introducing the additional constraint ia = 1.

3.2.1 Differential Item Functioning

Differential item functioning (DIF) is a difference in item responses
between equally proficient members of two ore more populations. For the
3PNO model, the difference in the response probability between two or
more groups can be modeled by defining an alternative model of
equation 3.1 as follows. Consider the case of two groups. A background
variable will be defined by

1 if a person n belongs to the focal group,

0 if a person n belongs to the reference group.ny
⎧

= ⎨
⎩

As a generalization of the model defined by equation 3.1, define

( ) ) ( ( ) )) .(1i n i n i n ii iP a b yc cθ θ δ= Φ − ++ − (3.2)
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This model implies that the responses of the reference group are properly
described by formula 3.1, but that the responses of the focal group need
additional location parameter iδ given by equation 3.2. The additional
parameter can be interpreted as a shift in the item difficulty parameter. In
principle, changes could also be present in the discrimination parameter,
but that case is not considered here.

3.2.2 Fit of the ICCs

The form of ICC describes the relation between a latent variable, say
proficiency, and observable responses to items. Evaluation of the
appropriateness of the ICC is usually done by comparing observed and
expected item response frequencies given some measure of the latent trait
level. The score range is partitioned into G subsets to form subgroups of
respondents. The item targeted should be left out of the total score for
technical reasons (see, Glas, 1999). Under the alternative model, the
probability of a correct response is given by

( ) ) ( ( ) )(1i n i n i igi iP a bc cθ θ δ= Φ − ++ − . (3.3)

Under the null model, which is the 3PNO model, the additional
parameter igδ is equal to zero. In the alternative model, igδ acts as a shift

in item difficulty for subgroup g = 2 , …, G. The first group is used as a
baseline.

3.2.3 Local Independence

The assumption entails that responses to different items are independent
given the latent trait value. So the proposed latent variable completely
describes the responses and no additional variables are necessary to
describe the responses. For the 3PNO model, the dependency between
the items i and l can be modeled as

( ) ) ( ( ) ) .(1i n i n i il ili iP a b xc cθ θ δ= Φ − ++ − (3.4)
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Note the parameter ilδ models the associations between two items. A

suitable item fit statistic can be used to test the special model, where ilδ =

0, against the alternative model, where ilδ ≠ 0.

3.3 Lagrange Multiplier (LM) Test

In 1948, Rao introduced a fundamental principle of testing based on the
score function as an alternative to likelihood ratio and Wald tests. Silvey
(1959) rediscovered the score test as a Lagrange multiplier (LM) test.
Applications of LM tests of model-fit to the framework of IRT have been
described by Glas and Verhelst (1995), Glas (1998, 1999), Glas and
Falcón (2003), Jansen and Glas (2005), and Glas and Dagohoy (2007).
The LM test is based on evaluating a quadratic function of partial
derivatives of the log-likelihood function of the general model evaluated
at the maximum likelihood estimates of the special model. The vector of
the first order derivatives of the special model is equal to zero because
their values originate from solving the likelihood equations. The
magnitude of the elements of the vector of the first order derivatives
corresponding with special parameters determines the value of the
statistic: the closer they are to zero, the better the model fits.

More formally, the principle of the LM tests is developed as follows.
Consider a null hypothesis about a model with parameters 0φ . This

model is a special case of a general model with parameters φ . In the
present case the special model is derived from the general model by
fixing one or more parameters to known constants. It will be assumed
that these parameters are not fixed at points on a boundary of parameter
space. Let 0φ be partitioned as '

0φ = ( '
01φ , '

02φ ) = ( '
01φ , c), where c is a

vector of postulated constants. Let h (φ ) be the partial derivatives of the
log-likelihood of the general model, so h (φ ) = (∂ / φ∂ ) ln L (φ ). This
vector of partial derivatives gauges the change of the log-likelihood as
the function of local changes in φ . Let H (φ ,φ ) be defined as –

( 2∂ / φ∂ 'φ∂ ) ln L (φ ). [Note that H(., .) is used as a generic symbol for a
matrix of the opposite of second order derivatives of the log-likelihood
function and the variables with respect to which derivatives are taken are
the arguments of H(., .). An analogous definition is used for h (.)].



3.3 Lagrange Multiplier (LM) Test 39

 Then LM statistics is given by

LM = h '
0( )φ 1

0 0( , )H φ φ − h 0( )φ . (3.5)

If the LM statistic is evaluated using the ML estimate of 01φ and the
postulated values of c, it has an asymptotic chi-square distribution with
degrees of freedom equal to the number of parameters fixed. An
important computational aspect of the procedures is that at the point of
the ML estimates ^

01φ , the free parameters have partial derivatives equal
to zero. Therefore, (3.5) can be computed as

( )LM c = ' 1( ) ( )h c W h c− (3.6)
with

^ ^ ^ 1 ^
0 1 01 0 1 0 1( , ) ( , ) ( , ) ( , )W H c c H c H H cφ φ φ φ−= − .

Note that ^ ^
01 01( , )H φ φ also plays a role in the Newton-Raphson

procedure for solving the estimation equations and in computation of the
observed information matrix or standard error. So its inverse will
generally be available at the end of the estimation procedure. Further, if
the validity of the model of the null-hypothesis is tested against various
alternative models, the computational work is reduced because the
inverse of ^ ^

01 01( , )H φ φ is already available and the order of W is equal
to the number of parameters fixed, which must be small to keep the
interpretation of the outcome tractable.

The interpretation of the test is supported by observing that the value of
equation 3.6 depends on the magnitude of ( )h c that is the first order

derivatives with respect to the parameters 02φ evaluated in c. If the
absolute values of these derivatives are large, the fixed parameters are
bound to change once they are set free. It means that the test is
significant, that is, the special model is rejected. If the absolute values of
these derivatives are small, the fixed parameters will probably show little
change should they be set free. It means that the test is not significant,
that is, the special model is adequate.
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The model violations that are described above can be evaluated using LM
test in a marginal maximum likelihood (MML) framework. Details will
be given below. Under the null model, the 3PNO model, additional
parameters are set to zero that designate specific model violations under
alternative models such as DIF, local independence, and form of ICC.
The vector ( )h c gauges the change in the additional parameters which is
the difference between the observed proportion correct and its posterior
expectation for a raw-score group, computed at the MML. The
covariance matrix of ( )h c , which is W, is available at the end of
estimation procedure that is needed to derive the asymptotic distribution
of the statistic.

3.4 Posterior Predictive Checks

Bayesian statistics has received considerable attention in statistics over
the past decade. There has been a recent surge in the use of Bayesian
estimation in IRT. Albert (1992), Patz and Junker (1999a, 1999b),
Bradlow, Wainer, and Wang (1999), Janssen, Tuerlinckx, Meulders, and
De Boeck (2000), Béguin and Glas (2001), Fox and Glas (2001, 2003),
Bolt, Cohen, and Wollack (2002), Sinharay, Johnson, and Williamson
(2003), and Wallack, Cohen, and Wells (2003) are only some of the
recent examples of application of Bayesian estimation and Markov chain
Monte Carlo (MCMC) algorithms (e.g., Gelman, Carlin, Stern, & Rubin,
2003) to fit complicated psychometric models. There are numerous
instances in which classical methods fail, but the Bayesian approach
offers a feasible method for assessing model fit. However, little attention
has been given to assessing fit of IRT models from a Bayesian
perspective.

In Bayesian statistics, a model can be checked in at least three ways: (1)
examining sensitivity of inferences to reasonable changes in the prior
distribution and the likelihood; (2) checking that the posterior inferences
are reasonable, given the substantive context of the model; and (3)
checking that the model fits the data. We address the third of these
concerns using the posterior predictive distribution for a discrepancy, an
extension of classical test statistics to allow dependence on unknown
(nuisance) parameters. Posterior predictive assessment was introduced by
Guttman (1967), applied by Rubin (1981), and given a formal Bayesian
definition by Rubin (1984).
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The posterior predictive checking (PPC) method is a popular Bayesian
model checking tool because of its simplicity. The method primarily
consists of comparing the observed data with replicated reference data
(those predicted by the model) using a number of test statistics. The idea
of PPC is to generate simulated values from the posterior predictive
distributions of replicated data and to compare these samples to the
observed data via the test statistic. If the replicated data and the observed
data differ systematically, it is an indication of a potential model misfit.
The framework of PPC can be defined as follows.

Letting X be the observed data and φ be the vector of all the parameters
in the model, we define p(X|φ ) as the likelihood and p(φ ) as the prior
distribution on the parameters. The PPC method suggests checking a
model by examining whether the observed data appear extreme with
respect to the posterior predictive distribution of replicated data, which is
obtained by

( | ) ( | ) ( | )rep repp X X p X p X dφ φ φ= ∫ (3.7)

Usually, discrepancy measures or a test quantities ( , )T X φ are defined,
and the posterior distribution of ( , )T X φ is compared to the posterior

predictive distribution of ( , )repT X φ , with substantial difference
between them indicate model fit. The PPC method allows a reasonable
summary of such comparisons with the posterior p-value:
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Extreme posterior p-values are indicative of model misfit. Because of the
difficulty in dealing with equation 3.7 and 3.8 analytically for all but
simple problems, Rubin (1984) suggested simulating replicate data sets
using MCMC from the posterior predictive distribution in practical
applications of the PPC method. The standard methods of MCMC
estimation include the Gibbs sampler and the more general Metropolis-
Hastings (MH) algorithm. The Gibbs sampler is a special case of the MH
algorithm in which parameters are sampled from their
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full conditional distributions (rather than a relatively arbitrary proposal
distribution). The prescribed algorithm generates a Markov chain of
iterates that constitute a random walk over the posterior distribution. The
results are equivalent to integrating the density over the data to obtain a
sample from the posterior distribution for the parameters.

One generates Q draws 1 2 3, , ,......, Qφ φ φ φ from the posterior distribution

( | )P Xφ of φ , and draws ,rep qX from the likelihood distribution

( | )qP X φ , q = 1, 2, . . . , Q. The process results in Q replicated data sets.
Equation 3.8 implies that the proportion of the Q replications for which
T ( , ,rep qX φ ) exceeds ( , )T X φ provides an estimate of the posterior p-
value. Extreme posterior p-values (close to 0, or 1, or both, depending on
the nature of the test statistic) indicate model misfit.

The important applications of the PPC method in educational
measurement and IRT context include Rubin and Stern (1994), Hoijtink
and Molenaar (1997), Scheines, Hoijtink and Boomsma, 1999, Albert
and Gosh (2000), Janssen, et al. (2000), van Onna (2003), Glas and
Meijer (2003), and Fox and Glas (2001, 2003).

3.5 Tests for Fit of IRT Models

Because the objective of this study is to compare the Bayesian and the
frequentist likelihood-based framework, the statistics used for the
evaluation of differential item functioning, the shape of the response
models and local independence will be generalizations of LM tests to
PPCs. We proceed as follows. If the value of nθ was known, the

likelihood of a response nix would be given by

log log ( ) (1 ) log(1 ( )) .ni ni i n ni i nL x P x Pθ θ= + − − (3.9)

The first-order derivative of some item parameter iφ , say ( , )n id θ φ , is
then given by

( ) '( ) ( )
( , )

( )(1 ( ))
ni i n i n
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θ θ
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θ θ
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=
−
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where ' ( )i nP θ is the first-order derivative with respect to iφ . In a marginal
maximum likelihood framework (MML, Bock & Aitkin, 1981), it is
assumed that the nθ -parameters are stochastic variables with a normal
distribution, and the likelihood in equation 3.9 is marginalized with
respect to this distribution. Further, the first order derivatives as in
equation 3.10 then become posterior expectations, that is,

( )( , ) |n i nE d θ φ x , (3.11)

where nx is a vector of all responses of respondent n (see, for instance
Glas, 1999). These first order derivatives can be used in the evaluation
of equation 3.5.

For the evaluation of model fit using a PPC, ( , )T X φ can be based on the
test statistics that are defined analogous to the fit statistics for the MML
framework. It will be shown that ( , )T X φ can then be defined as a
Pearson-type statistic, that is, as the squared difference between the
observed and expectation divided by the standard deviations of the
difference. One of the advantages of PPCs is that there is no need to
derive the distribution of test statistics under the null model. The
distribution is implicitly generated when running the MCMC procedure.
This is also the explanation for the fact that there is no need to implicate
a covariance matrix such as the covariance matrix W in the LM-statistic,
where accounting for the dependence between the vectors ( )h c is
essential for the derivation of the asymptotic distribution of the statistics.

The expressions for a test for DIF are derived as follows. The alternative
model for DIF is given by equation 3.2. The additional parameters is iδ .
Using equation 3.10, it is easily verified that the first-order derivative
with respect to iδ , evaluated at 0iδ = is given by
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where ( ( ))i n ia bφ θ − is the normal density function evaluated at

( )i n ia bθ − . Combining this with equation 3.11 and equation 3.6 gives the

desired LM statistic. Note that ( )ni i nx P θ− can be seen as a residual. It is
a quadratic form depending on squared residuals with a covariance
matrix as a matrix of weights. The covariance matrix is essential in the
derivation of the asymptotic distribution of the statistic. However, for an
analogous PPC this is not necessary because the distribution of the
statistic is generated. Therefore, we only take into account simply
weighted the residuals and define
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where the summations are over groups g and respondents n in group g,
respectively.

The alternative model to test the ICCs is given by equation 3.3. The
additional parameters is igδ and ( , )n igd θ δ is non-zero if the total score

(disregarding the responses on item i) is in the range g. For the PPC, the
discrepancy measure given by equation 3.13 can be used, except that the
summation is now over score ranges g. Analogously, the alternative
model to test local independence is given by equation 3.4 and ( , )n ild θ δ
is non-zero if 1ilx = . The discrepancy measure for a PPC becomes
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3.6 Simulation Design

Two characteristics of testing applications were manipulated: the number
of items (10, 20, and 40) and the sample size (100, 400, and 1000). To
simulate item responses, an ability parameter was randomly drawn from
a standard normal distribution. The difficulty and discrimination
parameters for fitting items were drawn from standard normal and log-
normal distributions, respectively. For the 3PNO model, the guessing
parameter was fixed at 0.20. The misfit was introduced by generating
responses using non-zero values for the δ-parameter. The δ-parameter
had values 0.5 or 1.0. To prevent unrealistic parameter values, the
discrimination and difficulty parameters for the misfitting items were
fixed at 1.0 and 0.0, respectively. The number of items showing model
violations varied from 10% to 20% of the test length. For every simulated
data set MML and Bayesian estimates were computed. The MML
estimates were computed as proposed by Bock and Aitkin (1981) and the
Bayesian estimates were computed using the method by Albert (1992)
with non-informative priors where the discrimination parameters were
constrained to be positive. The procedure had a run length of 4,000
iterations with a burn-in period of 1,000 iterations. Finally, for every
condition, 100 replications were simulated, and for every statistic the
proportion of replications with a p-value less than .05 was determined
under both frameworks.

3.7 Results

3.7.1 Differential Item Functioning

The tables discussed in this section show how the power of the Bayesian
and frequentist procedure fluctuated due to the combinations of test
length (denoted by K), effect size (denoted by δ), percentage of DIF
items (varied as 10% to 20%) and sample size (denoted by N). Tables 3.1
and 3.2 shows the power and Type I error rate of PPCs and LM
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procedures for the 2PNO model and the 3PNO model, respectively. The
columns labeled “10%” and “20%” shows the proportion of replications
for which the test on the differential item functioning was significant at
the 5% level. So these columns give an estimate of the power of test
under both frameworks. The columns under the label “Power” give the
proportion of replications with a p-value less than .05 for misfitting
items, that is, for items which were correctly flagged, the columns under
the label “Type I error rate” give the proportion of replications with a p-
value less than .05 for fitting items, that is, for items which were
incorrectly flagged.

Table 3.1. The Power and Type I error by test length, effect size and
sample size under the 2-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
DIF

Number of Items with
DIF

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.11 0.08 0.42 0.32 0.01 0.02 0.07 0.07

400 0.78 0.61 0.89 0.71 0.02 0.04 0.06 0.09
1000 1.00 1.00 0.99 0.99 0.03 0.07 0.05 0.07

1.0 100 0.81 0.63 0.84 0.76 0.01 0.03 0.11 0.15
400 1.00 1.00 1.00 1.00 0.03 0.10 0.07 0.08

1000 1.00 1.00 1.00 1.00 0.06 0.08 0.07 0.09
20 0.5 100 0.24 0.20 0.50 0.42 0.02 0.02 0.08 0.07

400 0.86 0.73 0.89 0.83 0.02 0.02 0.06 0.06
1000 1.00 1.00 1.00 0.99 0.02 0.03 0.05 0.08

1.0 100 0.68 0.73 0.95 0.86 0.02 0.02 0.08 0.09
400 1.00 1.00 1.00 1.00 0.02 0.04 0.06 0.08

1000 1.00 1.00 1.00 1.00 0.03 0.06 0.08 0.09
40 0.5 100 0.21 0.20 0.48 0.47 0.02 0.02 0.11 0.14

400 0.83 0.78 0.89 0.88 0.02 0.02 0.06 0.07
1000 0.99 0.99 1.00 1.00 0.02 0.04 0.06 0.08

1.0 100 0.74 0.73 0.95 0.92 0.02 0.02 0.11 0.12
400 1.00 1.00 1.00 1.00 0.02 0.04 0.06 0.09

1000 1.00 1.00 1.00 1.00 0.03 0.07 0.06 0.10

In general, for the power we see the expected main effects of effect size,
test length and sample size. The power of the LM test was higher than the
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power of the PPCs. Note that the LM test had the largest power; in many
instances the power was equal to 1.00.

Comparing Table 3.1 and table 3.2, it can be seen that the detection rates
were generally higher in all combinations under 2PNO model than under
the 3PNO model. The reason is that latter model has more item
parameters which have to be estimated than the 2PNO model. This leads
to a loss in precision of estimates and power. Note further that samples of
100 were insufficient to generate the necessary statistical power.
Generally, N = 500 is the minimum sample size recommended for
estimating two and three parameter logistic models (Hulin, Lissak, &
Drasgow, 1982).

Table 3.2. The Power and Type I error by test length, effect size and
sample size under the 3-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
DIF

Number of Items with
DIF

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.10 0.06 0.18 0.09 0.01 0.02 0.06 0.09

400 0.50 0.35 0.79 0.60 0.02 0.03 0.06 0.07
1000 0.88 0.79 1.00 0.99 0.02 0.05 0.05 0.06

1.0 100 0.27 0.15 0.72 0.51 0.01 0.01 0.11 0.15
400 0.97 0.86 1.00 1.00 0.02 0.06 0.08 0.10

1000 1.00 1.00 1.00 1.00 0.05 0.07 0.07 0.08
20 0.5 100 0.10 0.08 0.25 0.12 0.02 0.02 0.06 0.08

400 0.53 0.40 0.84 0.75 0.02 0.01 0.05 0.04
1000 0.94 0.96 1.00 1.00 0.02 0.03 0.04 0.05

1.0 100 0.44 0.29 0.78 0.60 0.01 0.02 0.07 0.08
400 1.00 0.97 0.99 0.99 0.02 0.03 0.05 0.06

1000 1.00 1.00 1.00 1.00 0.03 0.05 0.05 0.06
40 0.5 100 0.08 0.08 0.32 0.20 0.02 0.02 0.09 0.12

400 0.52 0.45 0.86 0.76 0.03 0.03 0.05 0.07
1000 0.94 0.91 1.00 1.00 0.02 0.03 0.05 0.06

1.0 100 0.37 0.34 0.79 0.68 0.02 0.03 0.12 0.14
400 0.99 0.99 1.00 1.00 0.02 0.03 0.06 0.08

1000 1.00 1.00 1.00 1.00 0.03 0.07 0.05 0.05
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For LM test the control of Type I error rate, that is, the proportion of
false alarms remained generally close to the nominal significance level.
The degrees of misfit and sample size to some extent have moderate
effect on the Type I error rates. The main exceptions occurred for the
large effect size with a short test and small sample. The explanation is
that in these cases the imposed model violation was such that every
combination led to a global violation affecting all items. While for PPCs,
the Type I error rates were quite conservative with the exceptions of few
ones. The possible explanation may be due to twice use of data as a result
posterior p-values were conservative (i.e., often failed to detect model
misfit) and inadequate behavior of posterior p-value. It should be noted
that in simulation studies without misfitting items (not shown here) the
Type I error rate was always close to a nominal significance level of 5%
for the LM test and conservative for the PPCs.

3.7.2 Local Independence (LI)

To evaluate the detection rate of local independence, a number of
simulation studies were carried out. These studies generally had the same
setup as the DIF study. Test statistics were computed in the same way as
previous ones. Tables 3.3 and 3.4 show the power and Type I error rate
of LM and PPCs as function of sample size, test length, degree of misfit,
and the number of misfit items. The optimal condition for the detection
of LI was a large sample size, large effect size and a large test length.
The main overall trend was that the detection rate decreased with small
sample size, short test and small effect size. For LM test the power is
uniformly higher and approach to unity in most of the combinations. For
the PPCs the proportions of hits were comparable but lower than the LM
test. The detection rates of LI were generally higher in all the
combinations under 2PNO than 3PNO model.
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There was also tendency that the detection rates for DIF were higher than
LI. The detection rates decreased as the number of misfit items increased
under both frameworks. The Type I error rates are conservative and quite
below than the nominal significance level for PPCs. The false alarm rates
for the LM test, generally, close to the significance level. The inflation
occurred with the increase of misfit items and large effect size.

Table 3.3. The Power and Type I error by test length, effect size and
sample size under the 2-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
LOC

Number of Items with
LOC

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.10 0.09 0.22 0.23 0.01 0.00 0.06 0.06

400 0.12 0.11 0.60 0.47 0.01 0.02 0.06 0.08
1000 0.59 0.24 0.96 0.85 0.01 0.02 0.06 0.08

1.0 100 0.17 0.13 0.71 0.52 0.01 0.01 0.10 0.12
400 0.72 0.13 1.00 0.90 0.01 0.02 0.08 0.10

1000 0.99 0.73 1.00 0.97 0.01 0.02 0.05 0.07
20 0.5 100 0.17 0.11 0.54 0.35 0.01 0.02 0.06 0.07

400 0.21 0.14 0.89 0.75 0.01 0.02 0.08 0.09
1000 0.77 0.67 1.00 0.97 0.01 0.02 0.05 0.06

1.0 100 0.22 0.10 0.86 0.83 0.01 0.01 0.09 0.09
400 0.93 0.84 1.00 0.99 0.01 0.02 0.09 0.10

1000 1.00 1.00 1.00 1.00 0.01 0.03 0.06 0.08
40 0.5 100 0.12 0.13 0.34 0.36 0.01 0.02 0.05 0.05

400 0.28 0.25 0.48 0.44 0.01 0.03 0.06 0.05
1000 0.81 0.78 0.98 0.86 0.01 0.02 0.05 0.06

1.0 100 0.23 0.16 0.49 0.52 0.01 0.02 0.06 0.07
400 0.94 0.89 1.00 1.00 0.01 0.02 0.06 0.06

1000 1.00 1.00 1.00 1.00 0.01 0.03 0.05 0.06

3.7.3 Shape of the ICCs

The detection rates and error rates for shape of ICC were shown in tables
3.5 and 3.6. The study had the same setup as the DIF and LI studies. The
large sample size and test length was the optimal condition for the
detection of items that violates the assumption of ICC. Again, there were
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clear main effects of the effect size, the sample size and the test length.
The main overall trend was that the detection rate decreased in the
combinations where sample size and number of items were small. For the
LM test the power is uniformly higher and approach to unity in most of
the combinations as compared to PPCs. The detection rates of ICC were
generally higher in the combinations under the 2PNO than under the
3PNO model.

Table 3.4. The Power and Type I error by test length, effect size and
sample size under the 3-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
LOC

Number of Items with
LOC

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.08 0.06 0.31 0.25 0.01 0.00 0.05 0.07

400 0.10 0.09 0.65 0.32 0.01 0.02 0.05 0.07
1000 0.35 0.17 0.84 0.66 0.01 0.02 0.06 0.07

1.0 100 0.15 0.11 0.65 0.49 0.01 0.01 0.10 0.12
400 0.48 0.10 0.98 0.76 0.01 0.02 0.09 0.11

1000 0.98 0.49 1.00 0.89 0.01 0.02 0.06 0.07
20 0.5 100 0.14 0.10 0.41 0.31 0.01 0.02 0.06 0.07

400 0.14 0.12 0.62 0.51 0.01 0.02 0.05 0.07
1000 0.60 0.50 0.97 0.84 0.01 0.02 0.06 0.09

1.0 100 0.16 0.03 0.93 0.73 0.01 0.01 0.08 0.09
400 0.87 0.63 1.00 0.94 0.01 0.02 0.09 0.09

1000 1.00 0.99 1.00 0.98 0.01 0.03 0.08 0.09
40 0.5 100 0.10 0.10 0.36 0.34 0.01 0.02 0.07 0.08

400 0.18 0.15 0.40 0.33 0.01 0.03 0.05 0.05
1000 0.67 0.59 0.91 0.82 0.01 0.02 0.05 0.05

1.0 100 0.11 0.09 0.52 0.49 0.01 0.02 0.08 0.09
400 0.80 0.69 1.00 0.92 0.01 0.02 0.05 0.06

1000 1.00 0.99 1.00 0.98 0.01 0.03 0.05 0.05
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There was also tendency that the detection rates for ICC were lower than
LI and DIF. Analogous to the simulations of local independence, the
Type I error rates are conservative and quite below than the nominal
significance level for the PPCs and false alarm rates for the LM test,
generally, close to the significance level.

Table 3.5. The Power and Type I error by test length, effect size and
sample size under the 2-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
ICC

Number of Items with
ICC

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.06 0.04 0.55 0.40 0.01 0.00 0.05 0.06

400 0.14 0.10 0.53 0.48 0.01 0.02 0.06 0.07
1000 0.59 0.24 0.77 0.61 0.01 0.02 0.05 0.05

1.0 100 0.17 0.13 0.97 0.77 0.01 0.01 0.05 0.06
400 0.72 0.23 0.97 0.78 0.01 0.02 0.05 0.05

1000 0.90 0.73 1.00 0.98 0.01 0.02 0.05 0.06
20 0.5 100 0.17 0.11 0.65 0.61 0.01 0.02 0.05 0.05

400 0.31 0.24 0.88 0.71 0.01 0.02 0.05 0.05
1000 0.77 0.67 0.81 0.68 0.01 0.02 0.05 0.06

1.0 100 0.20 0.10 0.97 0.90 0.01 0.01 0.06 0.06
400 0.83 0.74 0.95 0.87 0.01 0.02 0.05 0.05

1000 1.00 1.00 1.00 0.98 0.01 0.03 0.05 0.06
40 0.5 100 0.21 0.11 0.47 0.40 0.01 0.02 0.05 0.06

400 0.38 0.25 0.98 0.92 0.01 0.03 0.06 0.07
1000 0.81 0.78 1.00 0.96 0.01 0.02 0.05 0.05

1.0 100 0.23 0.16 0.53 0.49 0.01 0.02 0.06 0.06
400 0.94 0.89 0.99 0.96 0.01 0.02 0.05 0.06

1000 1.00 1.00 1.00 1.00 0.01 0.03 0.05 0.05
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Table 3.6. The Power and Type I error by test length, effect size and
sample size under the 3-PNO model.

Power Type I error rate
PPC LM PPC LM

Number of Items with
ICC

Number of Items with
ICC

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 100 0.08 0.05 0.49 0.38 0.01 0.00 0.06 0.05

400 0.12 0.07 0.44 0.19 0.01 0.02 0.07 0.04
1000 0.35 0.14 0.70 0.17 0.01 0.02 0.06 0.04

1.0 100 0.13 0.06 0.75 0.47 0.01 0.01 0.06 0.06
400 0.48 0.15 0.93 0.34 0.01 0.02 0.07 0.06

1000 0.88 0.34 0.98 0.45 0.01 0.02 0.06 0.06
20 0.5 100 0.14 0.12 0.81 0.67 0.01 0.02 0.05 0.06

400 0.24 0.15 0.38 0.20 0.01 0.02 0.05 0.06
1000 0.60 0.50 0.95 0.54 0.01 0.02 0.06 0.05

1.0 100 0.26 0.17 0.94 0.86 0.01 0.01 0.06 0.06
400 0.77 0.27 0.84 0.43 0.01 0.02 0.05 0.06

1000 0.90 0.49 0.97 0.65 0.01 0.03 0.06 0.05
40 0.5 100 0.11 0.10 0.47 0.40 0.01 0.02 0.05 0.06

400 0.88 0.65 0.98 0.92 0.01 0.03 0.06 0.05
1000 0.97 0.69 1.00 0.96 0.01 0.02 0.05 0.05

1.0 100 0.11 0.09 0.83 0.79 0.01 0.02 0.06 0.07
400 0.80 0.69 0.99 0.96 0.01 0.02 0.06 0.06

1000 1.00 0.99 1.00 1.00 0.01 0.03 0.06 0.05

3.8 An Empirical Example

The main purpose of this example is to show the type of outcome to
expect in a well-fitting data set. The example pertains to data of the
central examination in Secondary Education (MAVO-D level) of
language proficiency in German in the Netherlands. This centralized
examination is a high-stakes test. The data were collected in 1995. The
examination consisted of 50 items with 2 response categories of each.
The total sample used here consisted of 2021 students. The item
parameters were estimated by MML and MCMC assuming standard
normal distributions for the θ-parameters. Only the MML analysis will be
shown in detail, because the results for MCMC were comparable. We
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chose to present the complete tables with the statistics on all 50 items to
give a realistic impression of the output to expect.

Table 3.7 gives the results for the LM test of the ICCs obtained using the
1PNO model and 2PNO model, respectively. The test was based on a
partition of the score range into three subsets. The column labeled ‘LM’
gives the values of the LM-statistics; the column labeled ‘Prob’ gives the
significance probabilities. The statistics have 2 degrees of freedom. It
can be verified that 27 and 7 of the 50 LM-tests were significant at a 5%
significance level for 1PNO and 2PNO model, respectively. If the model
holds, the outcomes should be (approximately) uniform and the number
of significant tests at a 5% significance level should be approximately
2.5. So the conclusion is that the 1PNO did not fit well and the 2PNO
fitted reasonably well.

Table 3.7. Outcomes of LM tests for ICCs for examination data.
1 PNO
Model

2 PNO
Model

Group 1 Group 2 Group 3

Item LM Prob. LM Prob. Obs. Exp. Obs. Exp. Obs. Exp.
1 2.44 .29 0.64 .73 .41 .40 .52 .53 .67 .66
2 11.74 .00 2.17 .34 .82 .83 .88 .87 .90 .90
3 0.86 .65 1.45 .49 .52 .52 .66 .67 .80 .79
4 2.56 .28 2.48 .29 .25 .25 .35 .37 .53 .52
5 0.63 .73 7.19 .03 .79 .79 .90 .89 .94 .95
6 0.26 .88 5.09 .08 .15 .16 .25 .25 .39 .38
7 0.77 .68 0.28 .87 .87 .87 .92 .93 .96 .96
8 1.72 .42 0.85 .65 .94 .93 .96 .96 .97 .98
9 2.08 .35 0.82 .66 .62 .62 .78 .78 .88 .88
10 18.91 .00 0.74 .69 .85 .85 .94 .94 .98 .98
11 2.95 .23 2.08 .35 .85 .84 .91 .92 .97 .96
12 165.18 .00 13.19 .00 .84 .84 .95 .96 .00 .99
13 0.28 .87 0.11 .95 .35 .34 .49 .50 .65 .65
14 7.15 .03 8.02 .02 .76 .74 .84 .86 .94 .93
15 14.95 .00 0.74 .69 .90 .90 .96 .97 .99 .99
16 7.56 .02 3.23 .20 .42 .43 .59 .60 .77 .75
17 11.81 .00 8.15 .02 .75 .75 .84 .83 .87 .89
18 11.23 .00 3.38 .18 .92 .92 .98 .98 .99 .99
19 42.29 .00 11.38 .00 .19 .17 .16 .20 .25 .24
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Table 3.7. Continued
20 51.77 .00 9.26 .01 .29 .27 .32 .33 .38 .39
21 24.76 .00 3.66 .16 .47 .45 .54 .55 .63 .64
22 3.11 .21 0.34 .84 .37 .37 .50 .50 .62 .63
23 32.83 .00 3.17 .20 .80 .80 .92 .92 .98 .97
24 2.05 .36 0.67 .72 .61 .62 .75 .74 .82 .83
25 1.52 .47 0.92 .63 .47 .47 .60 .61 .74 .73
26 17.17 .00 3.77 .15 .66 .65 .80 .82 .93 .91
27 11.02 .00 1.76 .42 .29 .28 .44 .45 .65 .65
28 1.48 .48 1.16 .56 .47 .47 .61 .62 .77 .76
29 32.53 .00 2.28 .32 .76 .76 .90 .91 .97 .97
30 3.81 .15 2.89 .24 .33 .32 .45 .48 .65 .64
31 12.82 .00 0.13 .94 .45 .45 .56 .55 .66 .66
32 3.82 .15 3.36 .19 .46 .45 .56 .59 .73 .72
33 7.37 .03 1.24 .54 .44 .43 .53 .55 .67 .66
34 18.24 .00 4.92 .09 .27 .25 .31 .34 .45 .44
35 11.26 .00 10.47 .01 .67 .65 .84 .84 .92 .93
36 2.39 .30 2.77 .25 .49 .51 .69 .67 .79 .80
37 4.73 .09 0.23 .89 .78 .78 .86 .85 .90 .90
38 6.45 .04 10.10 .01 .67 .67 .80 .78 .84 .87
39 10.61 .00 2.94 .23 .60 .62 .80 .79 .89 .89
40 21.78 .00 0.92 .63 .44 .43 .51 .52 .63 .62
41 2.17 .34 1.19 .55 .50 .51 .62 .63 .75 .74
42 51.63 .00 2.20 .33 .59 .60 .82 .82 .93 .93
43 2.27 .32 3.00 .22 .47 .47 .60 .62 .76 .74
44 44.74 .00 0.81 .67 .75 .75 .91 .91 .97 .97
45 4.62 .10 0.10 .95 .52 .52 .64 .64 .75 .75
46 36.93 .00 0.21 .90 .54 .54 .77 .77 .89 .90
47 3.98 .14 0.46 .79 .41 .41 .60 .59 .74 .75
48 15.54 .00 4.37 .11 .53 .55 .76 .74 .86 .87
49 3.96 .14 0.65 .72 .40 .40 .51 .52 .65 .65
50 25.31 .00 3.05 .22 .76 .75 .89 .90 .97 .97



3.8 An Empirical Example 55

Table 3.8. Outcomes of LM tests for ICCs for examination data
combined with linking group data.

1 PNO
Model

2 PNO
Model

Group 1 Group 2 Group 3

Item LM Prob. LM Prob. Obs. Exp. Obs. Exp. Obs. Exp.
1 7.86 .02 4.56 .10 .41 .39 .52 .52 .67 .64
2 18.50 .00 2.89 .24 .82 .83 .88 .86 .90 .90
3 0.15 .93 0.14 .93 .52 .52 .66 .66 .80 .78
4 1.53 .46 2.93 .23 .25 .24 .35 .36 .53 .51
5 18.45 .00 48.08 .00 .79 .77 .90 .87 .94 .93
6 0.92 .63 0.46 .79 .15 .16 .25 .24 .39 .37
7 20.06 .00 17.62 .00 .87 .86 .92 .91 .96 .94
8 18.00 .00 18.17 .00 .94 .92 .96 .95 .97 .97
9 1.12 .57 0.09 .95 .62 .62 .78 .77 .88 .88
10 9.18 .01 0.50 .78 .85 .85 .94 .94 .98 .98
11 0.37 .83 3.85 .15 .85 .83 .91 .92 .97 .96
12 30.76 .00 5.21 .07 .84 .84 .95 .96 .00 .99
13 3.98 .14 7.51 .02 .35 .36 .49 .51 .65 .66
14 3.75 .15 12.57 .00 .76 .73 .84 .86 .94 .93
15 3.69 .16 3.54 .17 .90 .89 .96 .97 .99 .99
16 11.16 .00 7.65 .02 .42 .44 .59 .61 .77 .76
17 7.76 .02 4.65 .10 .75 .74 .84 .83 .87 .89
18 6.06 .05 8.47 .01 .92 .91 .98 .98 .99 .00
19 31.69 .00 48.76 .00 .19 .20 .16 .24 .25 .29
20 15.65 .00 16.73 .00 .29 .25 .32 .37 .38 .52
21 11.08 .00 10.78 .00 .47 .49 .54 .56 .63 .64
22 6.07 .05 76.84 .00 .37 .44 .50 .53 .62 .62
23 5.16 .08 0.99 .61 .80 .80 .92 .92 .98 .97
24 12.06 .00 6.70 .04 .61 .59 .75 .73 .82 .84
25 13.68 .00 21.28 .00 .47 .43 .60 .60 .74 .74
26 8.99 .01 10.40 .01 .66 .66 .80 .82 .93 .91
27 15.30 .00 21.47 .00 .29 .31 .44 .47 .65 .64
28 4.76 .09 19.22 .00 .47 .50 .61 .64 .77 .76
29 18.20 .00 0.81 .67 .76 .76 .90 .90 .97 .96
30 0.71 .70 2.35 .31 .33 .32 .45 .46 .65 .62
31 5.07 .08 1.46 .48 .45 .45 .56 .56 .66 .67
32 4.09 .13 8.29 .02 .46 .44 .56 .58 .73 .71
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Table 3.8. Continued
33 5.37 .07 1.09 .58 .44 .43 .53 .55 .67 .66
34 14.92 .00 4.99 .08 .27 .25 .31 .34 .45 .45
35 7.48 .02 29.83 .00 .67 .64 .84 .83 .92 .93
36 3.37 .18 2.92 .23 .49 .51 .69 .67 .79 .80
37 1.80 .41 1.75 .42 .78 .79 .86 .86 .90 .90
38 5.56 .06 10.48 .01 .67 .66 .80 .78 .84 .87
39 11.16 .00 3.01 .22 .60 .61 .80 .78 .89 .89
40 12.74 .00 3.23 .20 .44 .44 .51 .53 .63 .63
41 3.78 .15 13.08 .00 .50 .52 .62 .65 .75 .76
42 26.29 .00 4.53 .10 .59 .58 .82 .81 .93 .93
43 2.14 .34 2.34 .31 .47 .47 .60 .62 .76 .75
44 63.92 .00 120.11 .00 .75 .70 .91 .86 .97 .94
45 5.79 .06 1.34 .51 .52 .51 .64 .64 .75 .75
46 91.61 .00 46.13 .00 .54 .58 .77 .79 .89 .91
47 11.82 .00 8.08 .02 .41 .43 .60 .60 .74 .76
48 13.29 .00 12.42 .00 .53 .53 .76 .73 .86 .86
49 2.33 .31 4.72 .09 .40 .41 .51 .53 .65 .65
50 4.79 .09 16.08 .00 .76 .73 .89 .89 .97 .96

The last six columns give the observed average item scores and expected
average item scores in the three sub-groups under the headings ‘Obs’ and
‘Exp’, respectively. Such information may be helpful in assessing the
severity of the model violation in case of a significant test result.

Since the data fitted the 2PNO model quite well, the next question
addresses is whether that fit could be aggravated. Fortunately, data from
a linking study was also available, where the responses of 1033 test
takers collected in a non-high stakes situation. It was expected that these
students might be less motivated and that this would lead to a lesser
model fit. The results are displayed in Table 3.8. The numbers of
significant item tests rose to 29 and 25 for the 1PNO model and 2PNO
model, respectively. So the expectation of a decrease in model fit was
confirmed.

Table 3.9 and 3.10 give the analogous results for the LM test of the local
dependence. The tests are targeted at the dependence between an item i
and the previous item i-1. The columns under the labels “X=0” and
“X=1” give observed and expected average score on item i given a
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incorrect or correct score on an item i-1, respectively. The numbers of
significant tests were 14 (1PNO) and 5 (2PNO) for the examination data
and 15 (1PNO) and 16 (2PNO) for the examination data combined with
the liking group data. Again, the 2PNO model fitted best, and the
introduction of the linking group data decreased the model fit.

Table 3.9. Outcomes of LM tests for local independence for examination
data.

1 PNO
Model

2 PNO
Model

X = 0 X = 1

Item
i

Item
i-1

LM Prob. LM Prob. Obs. Exp. Obs. Exp.

2 1 0.03 .85 1.32 .25 .85 .86 .88 .88
3 2 2.23 .14 3.59 .06 .56 .61 .67 .66
4 3 0.00 .98 0.02 .89 .32 .32 .41 .41
5 4 0.22 .64 0.88 .35 .86 .86 .90 .90
6 5 0.18 .67 0.25 .62 .19 .20 .28 .28
7 6 0.84 .36 1.81 .18 .91 .91 .95 .94
8 7 0.90 .34 1.50 .22 .92 .94 .96 .96
9 8 0.45 .50 0.22 .64 .67 .69 .76 .76
10 9 4.54 .03 0.68 .41 .87 .88 .94 .94
11 10 0.99 .32 2.68 .10 .88 .84 .91 .91
12 11 3.04 .08 0.01 .91 .86 .86 .94 .94
13 12 0.00 .99 0.34 .56 .34 .32 .51 .51
14 13 7.07 .01 5.34 .02 .80 .82 .89 .87
15 14 1.53 .22 0.02 .90 .92 .92 .96 .96
16 15 1.12 .29 0.07 .79 .40 .41 .60 .60
17 16 0.66 .42 3.12 .08 .77 .79 .85 .84
18 17 11.85 .00 7.16 .01 .92 .94 .97 .97
19 18 0.01 .91 1.95 .16 .11 .16 .21 .20
20 19 1.13 .29 0.08 .78 .33 .33 .35 .35
21 20 0.81 .37 0.06 .80 .53 .54 .57 .56
22 21 2.89 .09 0.81 .37 .48 .47 .51 .52
23 22 7.16 .01 2.24 .13 .87 .88 .93 .92
24 23 0.73 .39 1.18 .28 .60 .63 .74 .74
25 24 1.10 .30 0.64 .42 .56 .54 .61 .62
26 25 0.05 .83 0.63 .43 .76 .75 .82 .82
27 26 0.67 .41 0.31 .58 .35 .34 .49 .49
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Table 3.9. Continued
28 27 1.18 .28 0.72 .40 .55 .56 .68 .67
29 28 0.01 .91 2.13 .14 .85 .84 .89 .90
30 29 2.58 .11 1.24 .26 .32 .34 .50 .49
31 30 0.24 .62 0.77 .38 .52 .53 .60 .59
32 31 4.64 .03 2.75 .10 .57 .55 .59 .61
33 32 0.06 .81 1.46 .23 .49 .50 .58 .57
34 33 0.36 .55 3.96 .05 .30 .32 .38 .37
35 34 5.19 .02 3.03 .08 .78 .79 .86 .85
36 35 5.82 .02 4.53 .03 .51 .55 .69 .69
37 36 0.55 .46 3.07 .08 .80 .82 .87 .86
38 37 0.16 .69 0.87 .35 .71 .73 .78 .78
39 38 8.14 .00 5.72 .02 .66 .70 .80 .78
40 39 10.38 .00 3.28 .07 .51 .47 .54 .55
41 40 4.52 .03 2.00 .16 .61 .60 .63 .64
42 41 4.73 .03 0.40 .53 .72 .73 .82 .82
43 42 0.58 .45 0.32 .57 .49 .50 .64 .64
44 43 1.34 .25 0.13 .72 .84 .84 .90 .90
45 44 1.21 .27 0.26 .61 .54 .53 .65 .65
46 45 2.73 .10 0.07 .80 .66 .67 .76 .76
47 46 11.85 .00 5.10 .02 .43 .46 .63 .62
48 47 25.85 .00 15.38 .00 .61 .65 .80 .77
49 48 0.04 .84 0.26 .61 .44 .45 .55 .55
50 49 6.40 .01 2.09 .15 .84 .85 .91 .90

3.9 Conclusions

In the present study, a number of analogous tests for model violations to
unidimensional item response models in a frequentist and Bayesian
framework were compared. The LM tests procedure which is based on
the MML framework is practical and useful tool for the evaluation of
model fit. The LM statistics are useful because they are item oriented
diagnostic tools, which give an indication of the source of model
violations. Potentially, they offer the possibility of directed model
relaxation to obtain sufficient model fit.

The main advantage of the Bayesian PPC procedure is that many model
violations for all items can be assessed without complicated
computations. They will gain in interest when they will be applied to
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more complex IRT models such as multidimensional models (Béguin &
Glas, 2001) and multilevel IRT models (Fox & Glas, 2001, 2003).

The simulation studies showed that the LM test had good power
characteristics and Type I error rates approximately equal to the nominal
significance level. The PPCs have comparable power characteristics to
the LM test except for short tests and small samples. The Type I error
rates for the Bayesian procedure were conservative and well below than
the nominal significance level. There was a clear tendency that both
procedures were more efficient in flagging misfitting items in 2PNO
model than in the 3PNO model.

Table 3.10. Outcomes of the LM tests for local independence for
examination data combined with linking group data.

1 PNO
Model

2 PNO
Model

X = 0 X = 1

Item
i

Item
i-1

LM Prob. LM Prob. Obs. Exp. Obs. Exp.

2 1 1.07 .30 0.34 .56 .85 .85 .88 .87
3 2 1.84 .17 3.31 .07 .56 .61 .67 .66
4 3 0.36 .55 0.22 .64 .32 .31 .41 .40
5 4 13.23 .00 16.41 .00 .86 .84 .90 .89
6 5 0.00 .99 0.05 .83 .19 .19 .28 .27
7 6 11.06 .00 7.62 .01 .91 .90 .95 .92
8 7 0.09 .77 0.54 .46 .92 .94 .96 .95
9 8 0.37 .54 0.29 .59 .67 .69 .76 .76
10 9 4.03 .04 0.82 .37 .87 .88 .94 .94
11 10 1.35 .25 3.66 .06 .88 .84 .91 .91
12 11 2.91 .09 0.01 .93 .86 .86 .94 .94
13 12 0.11 .74 0.00 .97 .34 .34 .51 .52
14 13 4.73 .03 2.93 .09 .80 .81 .89 .88
15 14 0.81 .37 0.15 .70 .92 .91 .96 .96
16 15 1.46 .23 0.18 .67 .40 .42 .60 .61
17 16 0.87 .35 2.36 .12 .77 .79 .85 .84
18 17 8.46 .00 3.76 .05 .92 .94 .97 .97
19 18 0.75 .39 5.47 .02 .11 .19 .21 .25
20 19 37.01 .00 63.56 .00 .33 .38 .35 .41
21 20 1.08 .30 5.43 .02 .53 .55 .57 .58
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Table 3.10. Continued
22 21 0.83 .36 7.48 .01 .48 .51 .51 .54
23 22 1.10 .30 1.83 .18 .87 .88 .93 .92
24 23 0.13 .72 0.16 .69 .60 .61 .74 .73
25 24 6.45 .01 5.12 .02 .56 .52 .61 .61
26 25 0.00 .98 0.01 .94 .76 .76 .82 .83
27 26 1.30 .25 0.98 .32 .35 .37 .49 .50
28 27 3.40 .07 9.08 .00 .55 .58 .68 .68
29 28 0.01 .93 3.59 .06 .85 .84 .89 .90
30 29 1.62 .20 0.63 .43 .32 .34 .50 .48
31 30 0.23 .63 2.63 .10 .52 .53 .60 .60
32 31 7.50 .01 6.07 .01 .57 .54 .59 .60
33 32 0.22 .64 1.40 .24 .49 .50 .58 .57
34 33 0.69 .41 4.04 .04 .30 .32 .38 .37
35 34 1.30 .25 0.00 .99 .78 .78 .86 .84
36 35 8.11 .00 5.51 .02 .51 .55 .69 .69
37 36 1.29 .26 4.05 .04 .80 .82 .87 .86
38 37 0.15 .70 0.61 .43 .71 .73 .78 .78
39 38 8.30 .00 4.98 .03 .66 .70 .80 .78
40 39 6.82 .01 1.96 .16 .51 .48 .54 .56
41 40 0.55 .46 0.00 .99 .61 .61 .63 .66
42 41 1.48 .22 0.16 .69 .72 .72 .82 .81
43 42 0.72 .40 0.25 .62 .49 .50 .64 .64
44 43 16.86 .00 32.54 .00 .84 .79 .90 .86
45 44 1.45 .23 0.48 .49 .54 .53 .65 .65
46 45 12.09 .00 5.86 .02 .66 .69 .76 .78
47 46 17.50 .00 10.14 .00 .43 .48 .63 .63
48 47 13.82 .00 5.90 .02 .61 .64 .80 .76
49 48 0.09 .76 1.15 .28 .44 .46 .55 .56
50 49 0.93 .34 0.04 .84 .84 .83 .91 .89
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Assessing Person Fit: A Comparative Study
of Frequentist and Bayesian Frameworks

Abstract: Item response theory (IRT) models are used to model the
likelihood that a test taker of a particular level of ability will answer a
particular test item correctly. In reality, test takers may not always
respond to test items in ways that are consistent with the IRT model.
Some possible reasons for this “nonfitting” behavior include test anxiety,
guessing, cheating in achievement tests, or faking responses in
personality inventories. Several person fit statistics have been proposed
to detect item score patterns that do not fit an IRT model. Traditionally,
IRT models are evaluated in a frequency based framework, usually the
maximum likelihood framework. However, nowadays, a Bayesian
framework is emerging as an alternative. This paper compares the Type I
error rate and power of a number of well known person fit statistics in
both frameworks.

In a frequentist framework, Snijders (2001) presented a general
framework for deriving the asymptotic null distribution for statistics
which are linear in the item responses. This allows the standardization of
linear person fit statistics with an estimated ability parameter. Further, a
Lagrange multiplier tests for person fit is considered. To support a
comparison with the Bayesian framework, all these tests are reformulated
to the normal ogive representation of IRT models. Posterior predictive
checks (PPCs) are a much used Bayesian model-checking tool. The
person fit tests considered in the frequentist approach are redefined as
PPCs. The results of simulation studies show that the power of the tests is
greater in a frequentist framework and Type I error rate was conservative
in the Bayesian framework.

This chapter has been submitted for publication as: M.N. Khalid and
Cees A. W. Glas, Assessing Person Fit: A Comparative Study of
Frequentist and Bayesian Frameworks.
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4.1 Introduction

In the context of item response theory (IRT) modeling, several methods
have been proposed to detect item score patterns that are not in
agreement with the item score pattern expected based on a particular test
model. These item score patterns should be detected because scores of
such persons may not be adequate descriptions of their trait level. This
area of research is commonly referred to as person fit research, and the
majority of the research on person fit has concentrated on the
development of statistics that can be used to identify nonfitting response
vectors (van Krimpen-Stoop & Meijer, 1999; Meijer & Sijtsma, 2001). A
response pattern is considered nonfitting or aberrant if it is found to be
unlikely given the model according to a person fit statistics (PFS). These
fit statistics focus on the appropriateness of the stochastic model on the
level of the individual. For this reason they are commonly called person
fit statistics. The causes for person misfit are many; all are factors
extraneous to the measured ability that systematically and significantly
affect performance and lead to inaccurate measurement of the ability.
Person fit methods may help to identify invalid outcomes of a test caused
by, for example, a lack of motivation to take the test seriously,
concentration problems, an alignment error in marking the answer sheets,
selective test preparation strategies, and faking on a personality test.

In the IRT context several person fit statistics have been proposed that
can be used to detect individual item score patterns that do not fit the IRT
model (Levine & Rubin, 1979; Wright & Stone, 1979; Tatsuoka, 1984;
Smith, 1985, 1986; Klauer & Rettig, 1990; Drasgow, Levine, &
McLaughlin, 1991; Glas & Dagohoy, 2007). See Meijer and Sijtsma
(2001) for a review.

One of the difficulties in the assessment of person fit is the fact that the
ability parameter of the examinee is unknown and needs to be estimated.
The use of an estimated rather than the true value of the ability parameter
has an effect on the distribution of the person fit statistic (Snijders, 2001).
These estimates usually decrease the asymptotic variance of most
statistics proposed in the literature. Therefore, their asymptotic
distribution is usually unknown. To solve this problem, Snijders (2001)
proposed a method for standardization of a specific class of person fit
statistics for dichotomous items, such that their asymptotic distribution
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can be properly derived. Snijders (2001) applied the correction for the
mean and variance of zl and derived an asymptotic normal

approximation for the conditional distributions of zl when θ̂ is used in
its calculation. Snijders performed a simulation study for relatively small
tests consisting of 8 and 15 items and for large tests consisting of 50 and
100 items, fitting the two-parameter logistic model (the 2PL model), and
estimating θ by maximum likelihood. The results showed that the
correction was satisfactory at Type I error levels of α = .05 and α = .10
but that the empirical Type I error was smaller than the nominal Type I
error for smaller values of α.

An alternative approach to account for the fact that the ability parameter
is estimated are the Lagrange multiplier tests (LM tests) for person fit
proposed by Glas and Dagohoy (2007). The purpose of the LM test is to
compare two models, a model under the null-hypothesis and a more
general model that is derived from the model under the null-hypothesis
by adding parameters. Only the model under the null-hypothesis needs to
be estimated. Simulation studies show that estimation of the item
parameters has little effect on distribution so only the effect of estimation
of θ is taken into account in the LM statistics.

Problems of sampling distributions are also avoided in a Bayesian
framework in combination with Markov chain Monte Carlo (MCMC)
computational methods. Exponential advances in current computing
capabilities have made it possible to address the problem of the
distribution of PFS using computationally intensive simulation based
methods. An example are the posterior predictive checks (PPCs) for
person fit the proposed by Glas and Meijer (2003). In this approach,
samples from posterior distribution p(θ | X) are drawn, and these samples
are used to generate replicate data repX that conform to the model. Using
the data and replicate data, discrepancy measures T(X, θ) and T( repX , θ)
are computed and the Bayesian equivalent of the p-value is approximated
by determining the proportion of simulated values of T( repX , θ) at least
as extreme as simulated values of T(X, θ). Compared to the traditional
frequentist approach, the Bayesian approach has several advantages.
First, there is no need to derive the theoretical sampling distribution of
the statistic, which sometimes may be very difficult. Second, the person
fit statistic may depend on unknown quantities such as person
parameters. This uncertainty is explicitly taken into account. However,
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Bayarri and Berger (2000) have shown that using PPCs also comes with
a problem. It often fails to detect model misfit and it had less than
adequate behavior of posterior p-values (Berkhof, van Mechelen, &
Gelman, 2002).

The purpose of this study is to describe and compare the person fit
statistics that take in account Snijders correction, LM tests, and Bayesian
procedures (PPCs) for evaluating goodness of fit in unidimensional
dichotomous IRT models. These frameworks will be compared with
respect to effects of sample size, test length, and the percentage of
misfitting score patterns on Type I error rate and power. This chapter is
organized as follows. First, the person fit statistics that are examined in
this study are presented. The second section introduces the description of
the LM statistic, Snijders’ correction procedure and PPCs. The third
section outlines the design of the simulation studies. Next, results from a
study comparing empirical Type I error rates and power for the above
frameworks are presented. Next an empirical data example is presented
to show how the frameworks compare in practice. Finally, some
conclusions are drawn, and some suggestions for further research are
given.

4.2 Person Fit Statistics

Meijer and Sijtsma (2001) have presented a comprehensive overview of
person fit statistics that are widely used in practice. A number of these
statistics will be used below. A short description of IRT models is
presented prior to the presentation of the fit statistics.

4.2.1 IRT Models

In the present study, we consider two- and three-parameter normal ogive
models for dichotomously scored items (the 2PNO model and the 3PNO
model). The normal ogive models were used because of computational
advantages in the Bayesian framework (see, Albert, 1992) and to support
direct comparability across the two frameworks. In the 3PNO model, the
item is characterized by a difficulty parameter ib , a discrimination

parameter ia and a guessing parameter ic . Further, θn is the latent ability
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parameter of respondent n. The probability of correctly answering an
item (denoted by 1iX = ) is given by

( 1| ) (1 ) ( ( )) ,i i i i i iP P X c c a bθ θ= = = + − Φ − (4.1)

where (.)Φ is
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If the guessing parameter ic is constrained to zero the model reduces to

the 2PNO model and if also the discrimination parameter ia is
constrained to one the model reduces to the 1PNO model.

4.2.2 W Statistic

The W statistic (Wright & Stone, 1979) is defined by
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where the difference between item score iX and the expected item score

iP is weighted by the variance of the item score.

4.2.3 UB Statistic

A related statistic was proposed by Smith (1985, 1986), in which set of
items is divided into S non-overlapping subsets denoted sA (s = 1,…,S).
Because the test length is the sample size of the statistic and test length is
relatively short, usually S = 2. Then the unweighted between-sets fit
statistic UB is defined as
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The UB Statistics is a weighted W statistic computed at the subset level.

4.2.4 1ξ Statistic

Two complementary statistics, 1ξ and 2ξ , were proposed by Tatsuoka

(1984). The 1ξ statistic is the standardization with a mean of zero and
unit variance of

1
1

[ ]( ) ,
k

i i i
i

P X n nξ
=

= − −∑ (4.4)

where in denotes the number of correct answers to item i, and n denotes
the mean number of correctly answered items in the test. The index will
be positive when easy items are incorrectly answered and difficult items
are correctly answered, and it will also be positive if the number of
correctly answered items deviates from the overall mean score of the
respondents. If a response pattern is misfitting in both senses, the
magnitude of the index will be largely positive.

4.2.5 2ξ Statistic

The 2ξ statistic is a standardization of
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where R is the person’s number-correct score on the test. The index will
be positive if the response pattern is misfitting in the sense that easy
items are incorrectly answered and difficulty items are correctly
answered; the overall response tendencies of the total sample of persons
are not important here.
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4.2.6 Log-likelihood Statistic

Another well-known person fit statistic is the log-likelihood statistic
which was first purposed by Levine and Rubin (1979). It is defined as
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{ log (1 ) log[1 ]}
k

i i i i
i

X P X P
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= + − −∑l . (4.6)

It was further developed by Drasgow, Levine, and Williams (1985) and
Drasgow, Levine, and McLaughlin (1991).

4.2.7 zl Statistic

Drasgow et al. (1985) proposed a standardized version zl of l , which is

asymptotically standard normally distributed; zl is defined as
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where ( )E l and var( )l denote the expectation and the variance of l ,
respectively.

4.3 Snijders’ Correction Procedure

Deciding whether a response pattern is aberrant boils down to evaluating
whether the outcome of a PFS for a particular response pattern is extreme
in the conditional null distribution of the PFS given θ. There are two
important criteria for evaluating the performance of a PFS (Drasgow,
Levine, & McLaughlin, 1987). The first is standardization. A well
standardized PFS has consistent conditional null distribution, which
makes it possible to compare all values of the PFS to one cut score for all
values of θ. The other criterion is power, which is a function of many
different factors including test length, scoring method, ability level, and
type and severity of aberrance.

A very well known likelihood-based PFS for assessing overall goodness
of fit to two- and three-parameter logistic IRT models is the log-
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likelihood of a person’s observed item scores (Levine & Rubin, 1979).
Drasgow, Levine, and Williams (1985) developed a standardized version
of l , zl , which is assumed to have a standard normal distribution across
different levels of θ. However, the standardization that Drasgow et al.
had assumed is inappropriate. Various researchers have found that even
when true ability is used to calculate zl , the conditional null distributions

of zl are neither standard normal nor consistent across different θ values.
Instead, the distributions are negatively skewed, and often leptokurtic
(Meijer & Sijtsma, 2001; Molenaar & Hoijtink, 1990; Nering, 1995).
When the true θ is replaced by its estimate θ̂ in the calculation of zl , the
problems were exacerbated; variable errors at different levels of the
estimated ability cause the variance of zl to be very inconsistent across
the θ levels. Therefore, empirical Type I error rates are lower than
nominal levels, and person misfit is underestimated. In addition, the
statistic has been shown to have relatively low power in detecting
misfitting response patterns (van Krimpen-Stoop & Meijer, 1999).

To deal with this problem, Snijders (2001) introduced a correction for the
mean and variance for a class of statistics which are linear in the item
responses and derived an asymptotic normal approximation for the

conditional distributions when θ̂ is used in its calculation. All statistics
introduced above, except UB belong to this class. As an example, we
introduce the approximation for the zl statistic. For the exact derivation
and for the expressions for other statistics refer to Appendix A.

 The centred version of the fit statistic l as given in (4.6) is written as
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parameter. To obtain a better approximation of the normal distribution,
the weight ( )i θω is modified as
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the modified PFS are
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4.4 An LM Test for Constancy of Theta

Item-oriented LM tests for IRT models have been proposed by Glas
(1998, 1999), Glas and Suárez-Falcón (2003), and Jansen and Glas
(2005). The LM test (Aitchison & Silvey, 1958) is equivalent with the
efficient score test (Rao, 1947) and the modification index that is
commonly used in structural equation modeling (Sörbom, 1989). The
purpose of the LM test is to compare two models, a model under the null-
hypothesis and a more general model that is derived from the model
under the null-hypothesis by adding parameters. The important advantage
of the LM test over likelihood ratio tests and Wald tests is that only the
model under the null-hypothesis needs to be estimated. Recently, LM
tests for person fit have been proposed by Glas and Dagohoy (2007).
These authors use the logistic representation of IRT models. In the
present application we use the normal ogive representation. The model
under the null-hypothesis is the 3PNO model. Under the alternative
hypothesis, it is assumed that there is a subset of items, say A, where the
ability parameter is shifted, that is, the probability of a correct response is
given by
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( 1| , ) (1 ) ( ( ) .i i i i i iP P X i A c c a bθ θ δ= = ∈ = + − Φ + − (4.12)

To test the constancy of theta across the response pattern, we define the
hypotheses

oH : δ = 0

and

1H : δ ≠ 0.

The test statistic is given by

2

2 12 2 2

2 2

LM  ,δ

δ δ θ θ

−

∂⎛ ⎞
⎜ ⎟∂⎝ ⎠=

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− + ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

l

l l l
(4.13)

where l stands for the log-likelihood function as defined in (4.6). Taking
first and second order derivatives with respect to some item parameter
results in the well-known general expressions
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The statistic has an asymptotic 2χ distribution with one degree of
freedom. If the absolute values of these derivatives are large, the fixed
parameters are bound to change once they are set free. As a result, the
test is significant, that is, the special model is rejected. If the absolute
values of these derivatives are small, the fixed parameters will probably
show little change should they be set free. So the test is not significant,
that is, the special model is not rejected.

In the framework of the logistic representation of IRT, Glas and Dagohoy
(2007) point out that the LM statistic for the constancy of theta can be
viewed as a UB statistic corrected for the estimation of the ability
parameter. In the normal ogive representation this relation between UB
and LM is less obvious due to the presence of the factors ' (1 )i i i iP c a φ= − .

In the logistic framework we have ' (1 )i i i iP Pa P= − .

4.5 Posterior Predictive Checks

Bayesian statistics has received considerable attention in statistics over
the past decade. There has been a recent surge in the use of Bayesian
estimation in IRT. Albert (1992), Patz and Junker (1999a, 1999b),
Bradlow, Wainer, and Wang (1999), Janssen, Tuerlinckx, Meulders, and
De Boeck (2000), Béguin and Glas (2001), Fox and Glas (2001, 2003),
Bolt, Cohen, and Wollack (2002), Sinharay, Johnson, and Williamson
(2003), and Wollack, Cohen, and Wells (2003) are only some of the
recent examples of application of Bayesian estimation and MCMC
algorithms (e.g., Gelman, Carlin, Stern, & Rubin, 2004) to fit
complicated psychometric models. There are numerous instances in
which classical methods fail, but the Bayesian approach offers a feasible
method for assessing model fit. However, little attention has been given
to assessing fit of IRT models from a Bayesian perspective.

In Bayesian statistics, a model can be checked in at least three ways: (1)
examining sensitivity of inferences to reasonable changes in the prior
distribution and the likelihood; (2) checking that the posterior inferences
are reasonable, given the substantive context of the model; and (3)
checking that the model fits the data. We address the third of these
concerns using the posterior predictive distribution for a discrepancy, an
extension of classical test statistics to allow dependence on unknown
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(nuisance) parameters. Posterior predictive assessment was introduced by
Guttman (1967), applied by Rubin (1981), and given a formal Bayesian
definition by Rubin (1984).

The posterior predictive model checks (PPCs) is a popular Bayesian
model checking tool because of its simplicity. The method primarily
consists of comparing the observed data with replicated data (those
predicted by the model) using a number of test statistics. The important
applications of the PPCs method in educational measurement and IRT
context include Rubin and Stern (1994), Hoijtink and Molenaar (1997),
Scheines, Hoijtink and Boomsma, 1999, Albert and Gosh (2000),
Janssen, et al. (2000), van Onna (2003), Glas and Meijer (2003), and
Fox and Glas (2001, 2003). The idea of PPCs is to generate simulated
values from the posterior predictive distributions of replicated data and to
compare these samples to the observed data. If the replicated data and the
observed data differ systematically, it is an indication of a potential
model misfit. The framework of PPCs can be defined as follows.

Letting X be the observed data and φ be the vector of all the parameters
in the model, we then define p(X|φ ) as the likelihood and p(φ ) as the
prior distribution on the parameters. The posterior predictive checking
method suggests checking a model by examining whether the observed
data appear extreme with respect to the posterior predictive distribution
of replicated data, which is obtained by

( | ) ( | ) ( | )  .rep repp X X p X p X dφ φ φ= ∫ (4.15)

Usually, discrepancy measures or a test quantities ( , )T X φ are defined,
and the posterior distribution of ( , )T X φ is compared to the posterior

predictive distribution of ( , )repT X φ , with substantial difference
between them indicate model fit. The posterior predictive checking
method allows a reasonable summary of such comparisons with the
posterior predictive p- value (PPP-value):
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( | ) ( | )
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PPP-values that are close to 0 or 1 are indicative of model misfits.

Because of the difficulty in dealing with equations 4.15 or 4.16
analytically for all but simple problems, Rubin (1984) suggested
simulating replicate data sets using MCMC from the posterior predictive
distribution in practical applications of the PPCs method. The standard
methods of MCMC estimation include the Gibbs sampler and the more
general Metropolis-Hastings (MH) algorithm. The Gibbs sampler is a
special case of the MH algorithm in which parameters are sampled from
their full conditional distributions (rather than a relatively arbitrary
proposal distribution). The algorithm generates a Markov chain of
iterates that constitute a random walk over the posterior distribution, the
results of which are equivalent to integrating the density over the data to
obtain a sample from the posterior distribution for the parameters.

One generates N draws 1 2 3, , ,......, Nφ φ φ φ from the posterior distribution

( | )P Xφ of φ , and draws ,rep nX from the likelihood distribution

( | )nP X φ , n = 1, 2, . . . , N. The process results in N replicated data sets.
Equation 4.16 implies that the proportion of the N replications for which
T ( ,rep nX ) exceeds T(X) provides an estimate of the PPP-value. Extreme
PPP-values (close to 0, or 1, or both, depending on the nature of the test
statistic) indicate model misfit. The details of MCMC framework for
2PNO model and 3PNO model can be found in Glas and Meijer (2003)
and Béguin and Glas (2001).

4.6 Simulation Design

The simulation study consisted of two parts. In the first part, the Type I
error rate as a function of test length and sample size was investigated. In
the second part, the detection rates of the different statistics for different
model violations, test lengths, and sample sizes were investigated. In all
reported simulation studies, the statistics l, W, UB, 1ξ , 2ξ and LM were
used as defined above. The simulation studies were performed under
2PNO and 3PNO models. The data were generated using fixed item
parameters; the ability parameters were drawn from a standard normal
distribution. The guessing parameters ci were fixed to .20 for all items.
Item difficulty and discrimination parameters were chosen as follows:
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• For a test length K = 30, three values of the discrimination parameter,
ai, 0.5, 1.0, and 1.5, were crossed with 10 item difficulties bi = −2.00 +
0.40(i − 1), i = 1, . . . , 10.

• For a test length K = 60, three values of discrimination parameters,
ai, 0.5, 1.0, and 1.5, were crossed with 20 item difficulties bi = −2.00 +
0.20(i − 1), i = 1, . . . , 20.

Data matrices with two samples sizes were used: N = 400 and N = 1,000.
For MML the item parameters were fixed at their true values. For
MCMC, the item parameters were re-estimated for each data set. The
non-informative priors and true values of the parameters were used as
starting values for the MCMC procedure. The procedure had a run length
of 4,000 iterations with a burn-in period of 1,000 iterations. That is, the
first 1,000 iterations were discarded. In the remaining 3,000 iterations,
T( repX , ξ) and T(X, ξ) were computed for every iteration. So the
posterior predictive checks were based on 3,000 draws. For the statistics
that use a partitioning of the items into subtests, the items were ordered
according to their item difficulty and then two subtests of equal size
were formed, one with the difficult and one with the easy items. Finally,
for every condition, 100 replications were made, and the proportion of
replications with a p value less than .05 was determined under both
frameworks. So for N = 400, a number of 40,000 replications of each
statistics were made and for N = 1000, a number of 100,000 replications
were made. The frequentist versions of the statistics were computed with
Snijders’ correction, except for the UB statistic where this correction is
not available.

4.7 Results

4.7.1 Type I Error Rate

The results for the Bayesian and frequentist frameworks are shown in
Table 4.1. The test characteristics that were manipulated (shown in the
tables) include the sample size denoted by N, test length denoted by K,
and the person fit statistics denoted by PFS. It can be seen that in general,
the significance probabilities converge to their nominal value of .05 as a
function of sample size and test length, and the nominal significance
probability was best approximated by the combination of a test length
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K= 60 and a sample size N = 400 or N = 1,000 in both frequentist and the
Bayesian frameworks. Note that for K = 30, the significance probabilities
were slightly smaller than the significance probabilities under the
frequentist framework. In general, significance probabilities are
conservative in the Bayesian approach. There are no clear effects for
specific person fit statistics, except that the UB seemed to be quite
conservative under both frame works. Finally, the Snijders’ correction
that was applied to derive the null distribution for PFS works quite well
and error rates approaches to the nominal significance level. Further, also
the significance probabilities of the LM test were very close to the
nominal significance level.

4.7.2 Detection Rates for Guessing

To evaluate the detection rate of guessing, a number of simulation studies
were carried out. These studies generally had the same setup as the
studies of the Type I error rate reported above. Item parameters were as
above, unless reported otherwise. The data were generated in such a way
that guessing occurred for 10% of the simulees, so data matrices with
N = 400 simulees had 40 aberrant simulees, and data matrices with
N = 1,000 simulees had 100 aberrant simulees. For these aberrant
simulees, guessing was imposed in three conditions, where 1/6, 1/3, or
1/2 of the test scores were corrupted by random responding. So for the
test with K = 30 items, the number of corrupted items was either 5, 10, or
15, and for the test with K = 60 items, the number of corrupted items was
either 10, 20, or 30. Guessing was always imposed on the items with the
lowest item difficulty. This was done because guessing on the easiest
items has the most detrimental effect on the estimation of θ (Meijer &
Nering, 1997), and thus, detection of these item score patterns is
important. The probability of a correct response to these items by
aberrant simulees was .20.
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Table 4.1. Type I error rates under the Bayesian and Frequentist
frameworks.

Bayesian Frequentist
K=30 K=60 K=30 K=60

Model PFS N=400 N=1000 N=400 N=1000 N=1000 N=1000
2PNO LM 0.048 0.052

UB 0.028 0.035 0.037 0.012 0.011 0.013
Like 0.039 0.031 0.038 0.033 0.037 0.066
W 0.041 0.039 0.044 0.031 0.046 0.061

Zeta1 0.042 0.041 0.047 0.040 0.045 0.048
Zeta2 0.078 0.062 0.065 0.062 0.051 0.062

3PNO
LM 0.045 0.051
UB 0.023 0.025 0.027 0.012 0.001 0.010
Like 0.029 0.031 0.032 0.033 0.036 0.062
W 0.031 0.032 0.034 0.031 0.038 0.053

Zeta1 0.047 0.043 0.041 0.040 0.043 0.049
Zeta2 0.075 0.061 0.065 0.065 0.046 0.051

Bayesian methods used posterior estimates of items parameters.
Frequentist methods used true values of item parameter estimates. Hence
there is no column for N=400 in frequentist case, because the sample size
for the estimation of item parameters plays no role share.

Test statistics were computed in the same way as in the Type I error
rates. The both procedures were run using the data of all simulees, both
the aberrant and nonaberrant ones. The presence of the aberrant simulees
did, of course, produce some bias in the parameter estimates, but this
setup was considered realistic because in many situations it is not a priori
known which respondents are aberrant and which are not. As in the
previous study, for the computation of statistics based on a partitioning of
the test, two subtests of equal size were formed: a difficult and an easy
one. As a result, the corrupted items were in the easiest test, although the
partitioning did not completely conform to the pattern of corrupted and
uncorrupted items. So in this sense, the partition was not optimal.

The proportions of “hits”, that is, the proportion of correctly identified
aberrant simulees, are shown in Table 4.2. The proportions of “false
alarms”, that is, the proportion of normal simulees incorrectly identified
as aberrant, are not shown because they were analogous to the Type I



4.7 Results 77

error rates under both frameworks. The main overall trend for all tests
was that the detection rate increased for 2PNO model than 3PNO model.
The detection rates were higher for identification of guessing simulees in
frequentist framework than Bayesian.

The optimal condition for the detection of guessing was a large sample
size and a large test length. Therefore, the results of the condition with N
= 1,000 simulees and K = 60 items is discussed first. The main overall
trend for all tests was that the detection rate decreased as the number of
affected items increased. This can be explained by the bias in the ability
parameters of simulees with nonfitting response vectors. It can be seen
that the ability estimates for the misfitting simulees was grossly inflated
because of misfit items for p = 1/2 and p = 1/3 than for p = 1/6
accordingly. It can also be concluded that the presence of 10% misfitting
simulees in the calibration sample affected the ability estimates for the
fitting simulees to some degree. As the number of affected items
increased, the ability estimates become biased, and because the fit
statistics were computed conditionally on θ, the detection rate decreased.
Inspection of the results in the condition with N = 400 simulees and K =
60 shows that the detection rate was little affected by the smaller
calibration sample.

For a test length of K = 30 items, the detection rate was slightly less than
for K = 60 items. This was as expected, because the statistics were
computed on an individual level, and on this level, the test length was the
number of observations on which the test was based. Finally, the false
alarm rates were well controlled with N = 400, 1000 and K = 30, 60
under both frame works. However, false alarm rates were slightly less
than the nominal level with K = 30 in frequentist frame work. But on
other hand overall they are conservative in the Bayesian frame work.
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4.7.3 Detection Rates for Item Disclosure

In high-stakes testing, persons may be tempted to obtain knowledge
about the type of test questions or even about the correct answers to the
items in the test. In computerized adaptive testing, this is one of the
major threats to the validity of test scores. But also in standardized paper-
and-pencil tests this is a realistic problem. Item preknowledge on a few
items will only have a minor effect on the number-correct score (Meijer
& Nering, 1997). Also, item preknowledge of the correct answers on the
easiest items in the test will only slightly improve the number-correct
score. This suggests that in particular item preknowledge on the items of
median difficulty and on the most difficult items may have an effect on
the total score. Thus, the effect of item preknowledge will be important
in particular for persons with a low ability level who answer many
difficult items correctly.

The setup of the simulation study to the detection rate of the tests for
item disclosure was analogous to the study to the detection rate for
guessing. So data were generated for sample sizes of N = 400 and N =
1,000 simulees and test lengths of K = 30 and K = 60 items; item
disclosure was prominent for 10% of the simulees; and for these
simulees, 1/6, 1/3, or 1/2 of the difficult items in the test were corrupted.
The probability of a correct response to these items was chosen to be .80.
Test statistics were computed in the same way as in the guessing study.

The proportions of hits are shown in Table 4.3. The false alarms were
analogous to Type I error rates so they are not presented. Now the items
in the second part of the test, that is, the difficult items, were affected by
the model violations. It can be concluded that the effects of test length
and proportion of affected items are also found here. Furthermore, the
absence of an effect of calibration sample size was replicated.

The optimal condition for the detection of item disclosure was a large
sample size and a large test length. The results showed that in general
under 2PNO model the detection rates were higher under both
approaches. Over all there was tendency that the detection rates were
higher for the LM test and fit statistics for which Snijders’ correction
take into account. There was also tendency that proportion of hits inflated
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in conditions with increase of misfit items. The detection rates of Zeta2
were relatively higher and for UB were relatively low among other tests.
In general it’s revealed that detection rates were higher for guessing than
item disclosure. The guessing violation is more severe than item
disclosure. In item disclosure the item parameters were not changed, so
for the aberrant simulees the probabilities of correct responses were
uniformly shifted for the affected part of the test. In guessing it implies
that the original items parameters lose their meaning, that is, all items are
equally difficult.

4.8 An Empirical Example

The main purpose of this example is to show the type of outcome to
expect in a well-fitting data set and to assess the agreement between the
two estimation frameworks. The example pertains to data of the central
examination in Secondary Education (MAVO-D level) of language
proficiency in German in the Netherlands. This centralized examination
is a high-stakes test. The data were collected in 1995. The examination
consisted of 50 items with 2 response categories of each. The total
sample used here consisted of 2021 students. The item parameters were
estimated by MML and MCMC assuming standard normal distributions
for the θ-parameters. For frequentist framework, given the MML
estimates of the item parameters, the θ- parameters were estimated by
maximum likelihood (ML), and the fit statistics were computed. In the
Bayesian MCMC framework, all parameters were estimated concurrently
with non-informative priors for the item parameters (see Albert, 1992).

Table 4.4 gives the results of detection rate in percentages for person fit
statistics under frequentist and the Bayesian framework at 5% and 20%
level of significance. The column labeled ‘PFS’ denotes the fit statistics
that were evaluated; the next four columns show the number of persons
that were identified as aberrant by each PFS under the respective
frameworks. The statistics computed in the frequentist framework had
higher detection rates than the PPCs computed in the Bayesian
framework. The UB statistic had the lowest detection rate, probably
because Snijders’ correction could not be applied.
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Table 4.4. Detection rate of fit statistics in percentages.
PSF Frequentist

5%
Bayesian

5%
Frequentist

20%
Bayesian

20%
Lz 4.8 2.7 18.8 3.0
W 4.2 1.8 16.8 2.9

Zeta 1 9.6 2.7 16.8 6.0
Zeta 2 12.6 2.5 17.1 7.5

UB 0.9 0.3 8.2 1.4
LM 6.5 - 23.9 -

Figure 4.1. Distribution of significance probabilities of UB in the
Bayesian framework.
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Figure 4.2. Distribution of significance probabilities of UB in the
frequentist framework.

Figure 4.3. Distribution of significance probabilities of LM in the
frequentist framework.
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Figures 4.1, 4.2 and 4.3 display the distributions of significance
probabilities of the UB test in the Bayesian and frequentist framework,
and distribution of significance probabilities of the LM test. Above it was
argued that the LM statistic could be seen as a corrected UB statistic.
Comparison of the three figures shows that the number of significant
outcomes is much lower for the two UB tests. The distribution of the
Bayesian version of UB has more kurtosis than the other two. This is in
line with the usual findings on the behavior of posterior p-values (Bayarri
& Berger, 2000; Berkhof, van Mechelen, & Gelman, 2002). Further,
compared to the distribution of LM, the frequentist version of UB is
clearly skewed to the right. As a result the number of significant
outcomes is low. Finally, the outcomes of the LM test are a very good
approximation to a uniform distribution. The number of values of LM
significant at 10% was 225 (out of 2021 students). Further, Pearson’s X2 -
test on the frequencies in the 10 deciles yielded a value of 2.35 with 9
degrees of freedom and a significance probability of 0.98. If the model
holds, the outcomes should be (approximately) uniform. The
“qualification approximate” is used because the significance probabilities
are not direct observations but (functions of) estimates, but the influence
of this is negligible. So the result can be seen as good support for model
fit.

4.9 Discussion and Conclusions

Aberrant response behavior in psychological and educational testing may
result in inadequate measurement. Therefore, it is important to detect
misfitting item scores. To classify an item score pattern as nonfitting, the
researcher can simply take the top 1% or top 5% of aberrant cases. As an
alternative, the researcher can use a theoretical sampling distribution or
simulate reference data based on the estimated item parameters in the
sample. Person fit statistics can be used as descriptive statistics. In this
study, however, person fit statistics were used to test the hypothesis that
an item score pattern is not in agreement with the underlying test model.
With some exceptions (Snijders, 2001; Glas & Meijer, 2003; Glas &
Dagohoy, 2007), most detection methods do not take into account the
uncertainty about the item and person parameters of the IRT model. In
this study, we used the Bayesian based method of PPCs and the
frequentist based methods of LM tests and statistics with Snijders’
corrections to take into account this uncertainty. Although Bayesian
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methods are statistically superior to other simulation methods (such as
the parametric and non-parametric bootstrap), a drawback is that they are
relatively complex and computational intensive and have conservative
significance probabilities (Sinharay & Stern, 2003). In this article, the
various approached were compared.

From the results, it can be concluded that for a test 60 items the Type I
error is well under control at a nominal .05 for most statistics studied in
both approaches. In general, the Type I error is slightly conservative, that
is lower, in the Bayesian procedure. Similar results were found in an
earlier study of Glas and Meijer (2003). The nominal significance level
for the LM tests and frequentist PFS with Snijders’ correction were quite
close to the 5% nominal significance level. This is in accordance with
findings in earlier studies (e.g., van Krimpen-Stoop & Meijer, 1999).
Detection rates differed for different statistics and different types of
model violations simulated. In general, it can be concluded that the
detection rates for guessing were higher than detection rates for item
disclosure. The fit statistics have higher power in the 2PNO model than
in the 3PNO model. This could be the fact that more item parameters
need to be estimated for the 3PNO model, which leads to a loss of power.
The frequentist procedures had a higher power than the Bayesian
procedures. Aggregated over all conditions, the 2ξ -test had the highest
power, while (uncorrected) UB-test had the lowest detection rates. The
detection rates decreased when the number of items affected by guessing
increased.

Glas and Dagohoy (2007) have shown that the Lagrange multiplier
statistic can take both the effects of estimation of the item parameters and
the estimation of the person parameters into account. However, the
estimation of the item parameters usually has little impact. The Lagrange
multiplier statistic has an asymptotic 2χ -distribution. Finally, a remark
can be made about the relation of the LM test to other tests of person fit.
An essential feature of the test is that a model violation is translated into
an explicit alternative model by introducing extra parameters that
represent the model violation. The test then amounts to the evaluation
whether the additional parameters are equal to zero. This distinguishes
the LM approach from the use of more general tests such as the test
based on the likelihood statistic zl by Drasgow et al. (1985) and the test
based on the Pearson-type W-statistic by Wright and Stone (1979). These
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tests have an unspecified general alternative, so they have a more global
nature. The LM approach allows for targeting specific model violations
and can also be used to target a number of other model violations rather
than the one studied here in detail.



4.A The Null Distributions of PFS 87

Appendix

4.A The Null Distributions of PFS

The person fit statistics ( )nW θ that is linear in the item responses
following Snijders defined as

( ) ( ) ( )n i i iW X Pθ θω= − (4.17)

where ( )i θω is the weight function. To obtain the approximation of the
normal distribution mean defined as

0( ( ) ) ( ) ( )n nE W c rθ θ θ≈ − (4.18)
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The above defined expressions are common for all PFS and the below
ones are PFS specific.

zl Statistic

The weight function for zl is

( ) ( )i ii a bθ θω = − (2PLM) (4.30)
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W Statistic

Weight function for W is
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1ξ Statistic

Weight function for 1ξ is

( ) ( )ii n nθω = − (4.33)

2ξ Statistic

The weight function for 2ξ is

( ) ( / )ii P R kθω = − (4.34)

The weight functions for W, 1ξ and 2ξ statistics are common for both
logistic and ogive models.
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A Comparison of Top-down and Bottom-up
approaches in the Identification of Differential
Item Functioning using Confirmatory Factor
Analysis

Abstract: Measurement invariance (MI) can be thought of as invariance
of measures of the same attribute under different conditions.
Confirmatory factor analytic (CFA) procedures can be used to provide
evidence of measurement invariance. When conducting DIF studies using
the CFA, there is variation in the way nested models are constructed. In
this paper, Constrained baseline (top-down) and Free baseline (bottom-
up) approaches for detection of test structure differences across groups
under several conditions were examined. More specifically, sample size,
test length, underlying response models, effect size, percentage of DIF
items, and kind of DIF were evaluated. Power and Type I error were
examined to evaluate the accuracy of detecting a lack of measurement
invariance for both approaches. Implications of the results are discussed
and recommendations for best practice are provided.

This chapter has been submitted for publication as: M.N. Khalid, Bernard
P. Veldkamp and Cees A. W. Glas, A Comparison of Top-down and
Bottom-up approaches in the Identification of Differential Item
Functioning using Confirmatory Factor Analysis.
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5.1 Introduction

Measurement can be defined as the systematic assignment of numbers on
variables to represent characteristics of persons, objects, or events. In the
behavioral sciences, measurement processes typically are aimed at
describing characteristics of individuals or groups that are of some
substantive interest to the researcher. But in order to compare individuals
or groups based on their scores, the scores have to reflect true differences
in these characteristics. Therefore, there is currently a great deal of
interest in the assessment of measurement invariance, in the field of
psychometrics. Measurement invariance, also referred to as measurement
equivalence (ME; Vandenberg, 2002) in the literature, can be thought of
as invariance of measures of the same attribute under different conditions
(Horn & McArdle, 1992). It is considered to be a prerequisite for
meaningful group comparisons (e.g., Raju, Laffitte, & Byrne, 2002;
Reise, Widaman, & Pugh, 1993; Vandenberg & Lance, 2000).

A test or a subscale is said to have measurement invariance across groups
or populations if persons with identical scores on the underlying/latent
construct have the same expected raw score or true score at the item
level, the subscale total score level, or both (Drasgow & Kanfer, 1985).
When measurement invariance is present, the relationship between the
latent variable and the observed variable remains invariant across
populations. In this case, the observed mean difference may be viewed as
reflecting only the true difference between the populations. However, in
selection contexts, practitioners may be concerned that differences in test
scores across groups are caused by the instrument rather than by
differences in proficiency (Drasgow, 1987; Stark, Chernyshenko, &
Drasgow, 2004). To solve these issues a methodology is needed that can
distinguish a lack of measurement invariance (i.e., differential item
functioning; DIF) from impact.

Currently, there are two popular methods for establishing measurement
invariance. One method is based on structural equation modeling (or,
more specifically, confirmatory factor analysis (CFA)), and the other is
based on item response theory (IRT). These approaches are often viewed
as distinctly different alternatives. Each alternative has its own
terminology and approach for examining the relationships among items
and scales, and have evolved in relative isolation. Mc-Donald (1999) and
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Raju et al., (2002) provided comprehensive reviews of the
methodological similarities and differences among CFA and IRT.

When conducting DIF studies using the CFA and IRT, there is a variation
in the way models are constructed. Both bottom-up and top-down
approaches are being applied. In the top-down approach, a baseline
model is formed by constraining the parameters for all items to be equal
across groups and a series of augmented models is formed by freeing the
parameters for the studied item(s), one at a time, and examining the
changes in 2G (e.g., Thissen, 1991; Bolt, 2002). In the first step of a top-
down approach, no DIF is assumed for all items. Next, models are
estimated that allow for one additional DIF item at a time. When the fit
of a subsequent model does not improve significantly, the approach
stops. The approach is also referred to as the Constrained baseline
approach. This term will be used through out this paper. When this
approach is used, it is not necessary to specify a referent item for
identifying the metric, because, in each comparison, all items except the
studied item are constrained. However, it is necessary to anchor the
metric by choosing a reference group whose latent mean is set to zero for
parameter estimation.

Constrained baseline (top-down) approaches, like for example the
traditional likelihood ratio (LR) tests, are being applied for several
reasons. First, it has been shown that Constrained baseline approaches
work fairly well in simulation studies where the number of DIF items is
not too large relative to the number of items examined (see Bolt, 2002;
Cohen, Kim, & Wollack, 1996; Kim & Cohen, 1998). Besides, it stems
from a general belief that it is better to establish a common metric by
using more than one item, as is often done in CFA. Using just one
referent could reduce the accuracy of the implicit linking that is required
for parameter estimation, thus leading to inaccurate DIF detection.
Linking based on one referent could also considerably be problematic if
the referent’s discrimination and location parameters differ appreciably
across groups. Consequently, additional steps might be needed, in
practice, to ensure that the choice of the referent is appropriate. Generally
speaking, IRT researchers prefer to implement a Constrained baseline
approach for detecting DIF.
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In the Free baseline (bottom-up) approach, a baseline model is typically
one in which all parameters except the referent are free to vary and an
item is studied by additionally constraining its parameters to be equal
across groups. In the first model, DIF is assumed for all items except the
referent. In each subsequent step, DIF is excluded for one additional
item. The approach stops when a subsequent model does not show a
significantly better fit.

The Free baseline approach is preferred due to following argument.
According to statistical theory (Maydeu-Olivares & Cai, 2006) for the
difference between a baseline model and constrained models to follow a
central chi-square distribution under the null hypothesis, the baseline
model has to fit the data. If the baseline model contains a number of DIF
items, then it might not fit adequately and DIF detection could be
adversely affected. Thus, from a statistical standpoint, the approach of
comparing nested models in Free baseline approach is theoretically
appropriate, whereas the traditional Constrained baseline approach is not.
In most CFA based methods for DIF detection, a Free baseline approach
is implemented.

To summarize, between CFA-based and the IRT-based approaches for
DIF detection, there are common themes but also discrepancies
concerning the details of implementation. In both cases, the comparison
models usually involve fixing or freeing a studied item or a subset of
items. In general CFA based methods implement a Free baseline
approach where as most IRT based DIF detection methods implement a
Constrained baseline approach. There have been some notable
exceptions, though. For example, Reise et al. (1993) used the Free
baseline approach to conduct an IRT DIF study of mood ratings collected
in Minnesota and China, and compared the results with those using CFA.
Besides, Chan (2000) used the Constrained baseline approach for CFA
analysis of cognitive styles across gender and occupational groups in
Singapore.

These studies are interesting and important because they illustrate
alternative approaches for group comparisons. However, they did not
address the question of accuracy concerning DIF detection. Moreover,
given the variation in methods that has been discussed in the literature, it
is premature to advocate strongly a particular sequence of steps, because
there have been no direct comparisons of the Free and Constrained
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baseline strategies in either domain, let alone across domains, in the
context of simulation studies, where the truth about DIF items is known.

Given the current variation in the way models are constructed, the
purpose of this research is to make a comprehensive comparative
simulation study and to explore the factors that have an impact on their
performance. The present study will provide a comparison of Free
baseline and Constrained baseline approaches for DIF detection to shed
some light on unexplored issues. Both approaches will be implemented in
CFA based method called Mean and Covariance Structure (MACS;
Sörbom, 1974). This method was selected because the basic process for
identifying DIF items in MACS is similar to the IRT based LR method
(see Thissen, Steinberg, & Wainer, 1993). It involves the comparison of a
baseline model with a series of augmented or constrained models. In
addition, it presumably capable of detecting DIF due to differences in
item discrimination (loadings) and location (item means or intercepts).
The rest of chapter organized as follows. First, a concise overview of
CFA frame work and CFA based DIF approach will be described.
Second, the outline of simulation study is described. Next, the results of
study are tabulated. Then both approaches are applied in the context of an
empirical example. Finally, a discussion and recommendations for
further study are provided.

5.2 CFA Based DIF Procedure

The following section provides an overview of the confirmatory factor
analysis (CFA) and differential item functioning (DIF) for examining
measurement invariance. Only the single underlying factor CFA model
will be presented.

5.2.1 Confirmatory Factor Analysis

Following Jöreskog and Sörbom (1996), the linear confirmatory factor
analysis (CFA) model may be represented as

,xx λ ξ δ= + (5.1)
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where x represents a vector of observed or measured variables, ξ is a

vector of latent variables or underlying factors, xλ is a regression
coefficient or factor loading matrix that relates factors to observed
variables, and δ is a vector of measurement errors/residuals in x.
Equation 5.1 is commonly referred to as the measurement model for the
exogenous variables in SEM. Typically, the vector x represents items that
serve as the indicator variables (i.e., the observed variables generated by
their underlying latent constructs); different items serve as indicator
variables for different latent constructs (ξ ) in a CFA. As a consequence,
the regression paths or lambdas linking the items to their underlying
latent constructs are of primary interest. If the factor loadings are equal
across groups and measurement errors are assumed to have a mean of
zero, then the expected value of x will be equal across groups. This
implies that persons of equal ability (i.e., same factor score) will have the
same expected raw score on the item (Raju, Laffitte, & Byrne, 2002).

5.2.2 DIF Procedure

In CFA literature, the term measurement invariance is broadly used, in
the sense that invariance can exist to different degrees or in different
forms (see e.g., Vandenberg & Lance, 2000). The weakest form of
invariance is known as configural invariance (Horn & McArdle, 1992),
which implies that the same number of factors and similar patterns of
loadings exist across groups. The next two forms of invariance are
known as metric invariance and scalar invariance. Metric invariance
implies equality of factor loadings and scalar invariance implies equality
of intercepts for the regressions of items on the latent variables they
represent (Steenkamp & Baumgartner, 1998). One can also examine
invariance of factor correlations or covariances, uniquenesses, and latent
means, but generally there is no clear prescription about the order or need
for performing these tests. Obviously, configural invariance must be
established before examining metric or scalar invariance. However,
metric invariance is cited as a prerequisite for meaningful examination of
scalar invariance in many expositions (e.g., Vandenberg & Lance, 2000).
In CFA, testing for equivalence of loadings and intercepts across groups
is relatively straight forward. First, one specifies a baseline model, where
at least those items are fixed that are needed for identification. The most
common way to set the metric is to select a reference item (i.e., a
referent) whose loading is set equal to 1 in both groups. In addition, to
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examine intercepts in a MACS analysis, one must also constrain the
intercepts for the referent to be equal across groups and the latent mean
for one group to be zero (for alternative approaches to identification, see
Byrne, 1998; Jöreskog & Sörbom, 1996; Reise et al., 1993). The next
step is to specify a series of compact (constrained) models where, in each
case, the respective loadings and/or intercepts for one or more items are
constrained to be equal across groups. The baseline and constrained
models are then estimated in succession to obtain a chi-square goodness-
of-fit statistic for each. Because each constrained model is nested within
the baseline model, one can then compare the change in chi-square with
respect to the baseline with a critical value having degrees of freedom
equal to the difference in degrees of freedom for the respective models.
For each comparison, a statistically significant result is viewed as
evidence that the hypothesis of equivalence of the constrained parameters
is untenable.

5.3 Study Design

The current study seeks to explore and compare the efficacy of
Constrained baseline and Free baseline models with detecting DIF using
a using unidimensional and multidimensional scale under a variety of
conditions. The following variables were manipulated in the study. First,
the sample size was varied. Earlier studies have found the effects of
sample size (Glas, 1999; Meade & Lautenschlager, 2004). Sample sizes
of 400 (small) and 1000 (large) were chosen as they frequently occurred
in the educational and psychological measurement. Earlier studies found
that increase in number of items also have an effect on power and Type I
error rates of DIF detection methods (Reise, 1990; Finch, 2005; Glas &
Dagohoy, 2007). Therefore the test length varied from 10 (small), 20
(average), and 40 (long test).

Besides, several response models were applied. The 2-parameter logistic
model (2PL), the 3-parameter logistic model (3PL), the Graded response
model (GRM), and a Multidimensional model were chosen as they are
the most commonly applied IRT models, and estimation procedures for
these models are well defined. Multidimensional models were also
chosen because they have not been studied before with CFA procedures.
The discrimination parameters were drawn from a lognormal distribution,
and difficulty parameters were drawn from a standard normal
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distribution. For the 3PL, guessing parameters were fixed at 0.20. For
GRM, Sample sizes of N = 400, and N = 1000 were crossed with test
lengths of K = 10, K = 20, and K = 40. For the test length K = 10, the
item parameters were equal to iβ = −2.00 + 0.20(i − 1), i = 1, . . . , 10.
For the test lengths K = 20 and K = 40 these values were repeated two
and three times, respectively.

The ability distributions of both the reference and the focal group follow
a standard normal distribution N(0, 1). For the multidimensional
(between & within) models, the mean was set equal to zero and the
correlation between dimensions was 0.40 and 0.80 respectively. Both
uniform and non-uniform DIF were simulated. The amount of DIF
varied. Effect sizes were set at 0.5 or 1.0. Finally, the percentage of DIF
items varied, either 10% or 20% of the items were simulated to have DIF.

The procedure that implements this study design can be described as
follows.

1) First, a reference group is designated, whose latent mean is set to
zero. The latent mean of the other group is free to vary.

2) Second, a baseline model is specified. For the Free baseline
approach, item 1 is chosen to be the referent item. Only the
parameters of this item (marker item) are constrained across
groups. For the Constrained baseline approach, the parameters for
all items are constrained across groups. Constraining items in
MACS implies that the loadings are constrained to be 1 and the
intercepts are constrained to be equal across groups. For a
multidimensional model, the first item on each dimension is
selected as a referent in the Free baseline approach.

3) Third, to detect DIF items, a series of constrained models is
formed, where one item at a time has its discrimination (loading)
and location (intercept) parameters simultaneously constrained to
be equal/freed across groups.

4) Finally, DIF items are identified by comparing the respective
changes in chi-square using a critical value. The critical chi-
squares used for MACS was 5.99 with 2 degrees of freedom for
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dichotomous, polytomous, and (between) multidimensional
conditions because the number of parameters that constrained/free
for nested models were equal. The critical chi-squares 7.81 with 3
degrees of freedom were used for within multidimensional
models due to loading of each indicator on each dimension.

MACS analyses were conducted using the LISREL 8 computer program
(Jöreskog and Sörbom, 1996). For each replication, baseline and
constrained or augmented models, constructed as described previously,
were run in succession; the chi-square goodness-of-fit statistics were
extracted from the LISREL output files using a FORTRAN program.
Chi-square difference statistics for the nested model comparisons were
evaluated with respect to critical p-values. More specifically, when the
observed chi-square difference was greater than the corresponding
critical chi-square value, the item was flagged as having DIF.

5.4 Results

Tables 5.1-5.10 present power and Type I error rate for the simulation
study. Power represents the proportion of DIF items correctly identified
as having DIF across the 100 replications in each condition. Type I error
represents the proportion of times an item having no DIF was incorrectly
flagged. Because of the large number of simulated conditions, we have
presented the interpretation of results in according to the generating IRT
models.

5.4.1 2PL

Tables 5.1 and 5.2 show the results for the 2PL model based on uniform
and non-uniform DIF conditions. The first column labeled K denotes test
length; the second column labeled δ denotes effect size and third column
labeled N denotes sample size. The next columns show the power and
Type I error rate as a function of test length, effect size and sample size
over 100 replications at the 5% level of significance. Labels 10% and
20% show the presence of DIF items as percentage of test length.
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Table 5.1. The Power under the 2PL model using Constrained baseline
and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.79 0.67 0.80 0.69 0.27 0.21 0.31 0.27

1000 0.99 0.97 0.99 0.98 0.62 0.44 0.64 0.43
1.00 400 1.00 1.00 1.00 1.00 0.64 0.43 0.65 0.42

1000 1.00 1.00 1.00 1.00 0.94 0.84 0.95 0.86
20 0.5 400 0.83 0.72 0.87 0.73 0.27 0.26 0.29 0.28

1000 1.00 1.00 1.00 1.00 0.70 0.65 0.79 0.69
1.00 400 1.00 1.00 1.00 1.00 0.74 0.67 0.77 0.67

1000 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.98
40 0.5 400 0.77 0.74 0.82 0.85 0.37 0.32 0.40 0.34

1000 0.98 0.99 0.99 0.98 0.77 0.69 0.80 0.68
1.00 400 1.00 1.00 1.00 1.00 0.88 0.78 0.90 0.79

1000 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00

Table 5.2. The Type I error rate under the 2PL model using Constrained
baseline and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.14 0.14 0.07 0.08 0.10 0.14 0.08 0.08

1000 0.15 0.23 0.07 0.08 0.12 0.16 0.09 0.10
1.00 400 0.19 0.28 0.08 0.09 0.13 0.15 0.07 0.09

1000 0.21 0.43 0.07 0.08 0.14 0.18 0.08 0.10
20 0.5 400 0.09 0.09 0.06 0.07 0.08 0.10 0.08 0.09

1000 0.09 0.11 0.08 0.08 0.11 0.13 0.08 0.09
1.00 400 0.10 0.12 0.07 0.08 0.10 0.12 0.07 0.09

1000 0.11 0.16 0.07 0.08 0.14 0.15 0.07 0.08
40 0.5 400 0.07 0.06 0.06 0.05 0.06 0.06 0.05 0.06

1000 0.08 0.09 0.06 0.06 0.09 0.06 0.06 0.06
1.00 400 0.08 0.09 0.06 0.07 0.07 0.08 0.06 0.07

1000 0.08 0.09 0.06 0.07 0.07 0.10 0.06 0.07
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For uniform DIF, the detection rates in most instances were close or
equal to 1.0 and much smaller for similar conditions in non-uniform DIF.
Note that detection rates have main effects of test length, effect size and
sample size. The increase in test length and sample size inflates the
power because of the more reliable estimates of parameters. The large
effect size makes a substantial difference in response probabilities among
the groups that inflates the power. Overall, the power to detect DIF was
better when item means (thresholds) were different for the two groups
(uniform DIF) rather than just the loadings (non-uniform DIF). This
might be explained as follows. Increasing the thresholds made the DIF
items more difficult for focal group members, essentially shifting their
item response functions toward the right (indicating higher trait levels).
Thus, focal group members of equal standing on the latent attribute had a
lower probability of endorsement than reference group members,
regardless of trait level. The increase in the thresholds can be viewed as a
nuisance dimension. On the other hand, reducing the loadings made the
DIF items less discriminating for focal group members. When item
discrimination varies across groups, the item response functions that
relate probability of endorsement to trait level cross, meaning that the
reference group is favored at some trait levels and the focal group at
others. But the underlying model is still followed and due to crossing of
favourability the net effect is moderate. The detection rates were
comparable among both Free baseline and Constrained baseline
approaches and slightly in favour of the Free baseline approach, for
instance when test length was 10.

Type I error rates were inflated for Constrained baseline conditions
irrespective of the kind of DIF. For example, when uniform DIF was
simulated, the Constrained baseline strategy yielded Type I error rates
ranging from .14 to .43, for small tests. These error rates were slightly
lower when non-uniform DIF was simulated. The error rates have main
effects of percentage of DIF items, effect size, and test length. Overall, it
appears that the presence of items having large DIF in the baseline model
substantially increased the Type I error but did not effect the power. Note
also that when items having small DIF were present in the Constrained
baseline models, error rates were still inflated but to a lesser degree.

In contrast to the highly inflated Type I error rates in the DIF conditions
for the Constrained baseline approach, the Free baseline strategy showed
excellent results regardless of sample size, percentage of DIF items and
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effect size. For example, when effect size is large, Type I error rates for
the Free baseline conditions were between .06 and .08 in both uniform
and non-uniform DIF conditions. These results are similar to the earlier
findings of Stark, Chernyshenko, and Drasgow (2006). Therefore, having
a baseline model that fits the data, (i.e., did not include DIF items) was
critical for accurate detection. This point elaborates as follows. When the
least restrictive model holds, relative fit assessment can be safely
performed for much larger models than those whose absolute fit can be
tested with the 2χ and 2G statistics. However, when the least restrictive
model being compared is misspecified, statistical inferences based on

2G (dif) can be misleading. This is because in this case a chi-square
distribution is no longer the appropriate large sample reference
distribution for this statistic (Maydeu-Olivares & Cai, 2006). Recently,
Yuan and Bentler (2004) showed that when a likelihood ratio statistic is
used to compare two nested models but the least restrictive model is
misspecified inflated Type I errors are obtained. Their results thus concur
with those presented here.

5.4.2 3PL

Tables 5.3 and 5.4 show the results for the power and Type 1 error rates
when data was simulated using the 3PL. The detection of DIF decreased
dramatically in most instances as compared to similar conditions
observed under the 2PL. The decrease in the power is more evident when
the DIF was simulated using non-uniform rather uniform DIF. To some
extent detection rates have main effects of test length, sample size and
effect size; specifically for non-uniform DIF. Detection rates were higher
for uniform DIF. In general, it can be seen that the detection rates were
comparable among both approaches and slightly in favour of the Free
baseline approach for both uniform and non-uniform DIF.
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Table 5.3. The Power under the 3PL model using Constrained baseline
and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.67 0.40 0.70 0.56 0.11 0.10 0.11 0.17

1000 0.93 0.83 0.96 0.86 0.17 0.15 0.18 0.16
1.00 400 1.00 0.97 1.00 0.99 0.19 0.17 0.29 0.20

1000 1.00 0.99 1.00 1.00 0.41 0.38 0.42 0.40
20 0.5 400 0.63 0.51 0.64 0.54 0.19 0.17 0.21 0.19

1000 0.96 0.95 0.98 0.96 0.23 0.21 0.23 0.21
1.00 400 1.00 0.99 1.00 1.00 0.26 0.17 0.28 0.27

1000 1.00 1.00 1.00 1.00 0.56 0.51 0.60 0.54
40 0.5 400 0.60 0.55 0.64 0.58 0.20 0.18 0.25 0.24

1000 0.94 0.92 0.97 0.91 0.28 0.23 0.38 0.33
1.00 400 1.00 0.99 1.00 1.00 0.30 0.28 0.32 0.31

1000 1.00 1.00 1.00 1.00 0.46 0.47 0.59 0.56

Table 5.4. The Type I error rate under the 3PL model using Constrained
baseline and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.11 0.10 0.07 0.08 0.07 0.08 0.04 0.05

1000 0.12 0.18 0.08 0.09 0.06 0.06 0.07 0.07
1.00 400 0.13 0.25 0.09 0.11 0.07 0.08 0.07 0.07

1000 0.14 0.28 0.10 0.14 0.07 0.08 0.08 0.08
20 0.5 400 0.07 0.08 0.04 0.05 0.04 0.06 0.05 0.05

1000 0.10 0.10 0.07 0.08 0.06 0.05 0.06 0.05
1.00 400 0.10 0.11 0.07 0.08 0.05 0.06 0.06 0.06

1000 0.11 0.14 0.09 0.09 0.06 0.06 0.06 0.07
40 0.5 400 0.06 0.07 0.04 0.05 0.04 0.04 0.05 0.05

1000 0.07 0.08 0.06 0.07 0.05 0.05 0.04 0.05
1.00 400 0.08 0.09 0.06 0.06 0.06 0.04 0.04 0.05

1000 0.08 0.09 0.07 0.07 0.05 0.05 0.05 0.05
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Type I error rates were inflated for the Constrained baseline approach in
case of uniform DIF conditions. When uniform DIF was simulated, the
Constrained baseline strategy yielded Type I error rates ranging from .14
to .28. The error rates were close to nominal significance level when non-
uniform DIF was simulated. Overall, it appears that the when the
underlying model was 3PL, the performance of both approaches appears
to decrease. A possible explanation might be the presence of a guessing
parameter, since in CFA there is no parameter that accommodates for the
guessing behaviour.

5.4.3 GRM

Tables 5.5 and 5.6 show the results when the data was simulated using
the Graded Response Model (GRM). It is evident that increasing the
number of response categories from two to five improved the accuracy of
DIF detection. Detection rates were slightly higher in case of uniform
DIF. The increase in detection rates when the underlying model was the
GRM instead of the 2PL may be explained as follows. When the number
of response options increases, violations of normality and continuity
becomes less of an issue and the power of approach improves. The power
of both the constrained based approach and the Free baseline approach
was comparable, but the Free baseline approach showed much smaller
Type I error rates. Note that the error rates remained fairly low for the
Free baseline conditions but that they are slightly higher than those
observed in the dichotomous conditions.
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Table 5.5. The Power under the GRM model using Constrained baseline
and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.87 0.85 0.88 0.86 0.67 0.61 0.67 0.62

1000 0.99 0.98 1.00 0.99 0.93 0.84 0.94 0.85
1.00 400 1.00 1.00 1.00 1.00 0.84 0.80 0.85 0.82

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 0.5 400 0.93 0.87 0.95 0.86 0.70 0.68 0.71 0.69

1000 1.00 1.00 1.00 1.00 0.96 0.94 0.97 0.95
1.00 400 1.00 1.00 1.00 1.00 0.88 0.86 0.88 0.87

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 0.5 400 0.97 0.94 0.98 0.95 0.77 0.72 0.78 0.72

1000 0.98 0.99 0.99 0.98 0.98 0.96 0.99 0.97
1.00 400 1.00 1.00 1.00 1.00 0.98 0.96 0.99 0.97

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.6. The Type I error rate under the GRM model using
Constrained baseline and Free baseline approach.

Cons. Free Cons. Free
Number of items with

uniform DIF
Number of items with

non-uniform DIF
K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.14 0.15 0.07 0.08 0.11 0.13 0.08 0.08

1000 0.16 0.26 0.07 0.08 0.13 0.15 0.07 0.08
1.00 400 0.19 0.29 0.07 0.08 0.14 0.17 0.08 0.09

1000 0.24 0.42 0.07 0.08 0.16 0.20 0.08 0.10
20 0.5 400 0.08 0.09 0.06 0.07 0.09 0.11 0.06 0.07

1000 0.10 0.11 0.06 0.07 0.09 0.13 0.07 0.08
1.00 400 0.11 0.14 0.07 0.08 0.10 0.12 0.07 0.08

1000 0.13 0.17 0.07 0.08 0.16 0.18 0.06 0.07
40 0.5 400 0.06 0.06 0.06 0.05 0.06 0.07 0.05 0.06

1000 0.05 0.07 0.05 0.06 0.09 0.06 0.05 0.06
1.00 400 0.07 0.08 0.06 0.07 0.07 0.08 0.06 0.07

1000 0.08 0.09 0.05 0.07 0.08 0.10 0.06 0.07
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5.4.4 Multidimensional (between) Models

Tables 5.7 and 5.8 show the results when data were simulated using the
multidimensional (between) model. The power in most instances was
close or equal to 1. Effects of effect size and sample size were found.
Overall, the power to detect DIF was comparable irrespective of
correlation between the dimensions. Type I error rates were inflated for
Constrained baseline conditions and remain close to nominal significance
level for the Free baseline approach. The detection rates were comparable
among both Free baseline and Constrained baseline approaches and
slightly in favour of the Free baseline approach for instance when effect
size and sample size were small.

Table 5.7. The Power under the multidimensional (between) model with
correlation 0.40 and 0.80 using Constrained baseline and Free baseline
approach.

Correlation 0.40 Correlation 0.80
Cons. Free Cons. Free

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.71 0.74 0.73 0.75 0.72 0.77 0.74 0.76

1000 0.99 0.97 0.99 0.98 1.00 1.00 1.00 0.99
1.00 400 0.99 1.00 0.99 0.98 1.00 1.00 1.00 0.99

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 0.5 400 0.76 0.80 0.79 0.80 0.76 0.80 0.77 0.78

1000 0.99 0.98 0.99 0.97 0.99 1.00 0.94 0.89
1.00 400 1.00 1.00 1.00 1.00 1.00 1.00 0.97 0.95

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
40 0.5 400 0.79 0.76 0.78 0.77 0.75 0.73 0.76 0.72

1000 0.99 0.99 0.98 0.99 1.00 1.00 0.88 0.99
1.00 400 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99

1000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5.8. The Type I error rate under the multidimensional (between)
model with correlation 0.40 and 0.80 using Constrained baseline and
Free baseline approach.

Correlation 0.40 Correlation 0.80
Cons. Free Cons. Free

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.07 0.11 0.05 0.05 0.06 0.11 0.04 0.06

1000 0.09 0.16 0.05 0.05 0.09 0.17 0.06 0.07
1.00 400 0.14 0.24 0.05 0.07 0.13 0.22 0.03 0.05

1000 0.25 0.50 0.05 0.06 0.23 0.46 0.05 0.04
20 0.5 400 0.05 0.06 0.05 0.05 0.05 0.06 0.04 0.05

1000 0.05 0.07 0.04 0.05 0.05 0.05 0.05 0.04
1.00 400 0.06 0.07 0.05 0.05 0.06 0.07 0.05 0.04

1000 0.08 0.13 0.04 0.05 0.08 0.12 0.04 0.05
40 0.5 400 0.04 0.05 0.04 0.04 0.04 0.07 0.04 0.04

1000 0.05 0.07 0.04 0.04 0.05 0.06 0.04 0.04
1.00 400 0.06 0.07 0.05 0.04 0.06 0.08 0.05 0.05

1000 0.08 0.12 0.05 0.05 0.08 0.11 0.04 0.05

5.4.5 Multidimensional (within) Models

The results are shown in tables 5.9 and 5.10 when data were simulated
using the multidimensional (within) model. Overall, the power to detect
DIF and Type I error rates were lower than those observed for the
between multidimensional models. The decrease in power can be
explained as follows. There are more parameters that have to be estimate
for the within multidimensional models. That results in loss of precision.
Type I error rates were inflated for Constrained baseline approach.
Detection rates were comparable for both approaches and slightly in
favour of Free baseline approach.
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Table 5.9. The Power under the multidimensional (within) model with
correlation 0.40 and 0.80 using Constrained baseline and Free baseline
approach.

Correlation 0.40 Correlation 0.80
Cons. Free Cons. Free

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.61 0.59 0.62 0.63 0.63 0.62 0.65 0.64

1000 0.82 0.77 0.80 0.79 0.83 0.79 0.82 0.80
1.00 400 0.89 0.82 0.90 0.85 0.89 0.83 0.90 0.87

1000 0.98 0.93 0.95 0.93 0.98 0.93 0.95 0.93
20 0.5 400 0.63 0.60 0.71 0.67 0.65 0.62 0.71 0.67

1000 0.72 0.75 0.72 0.76 0.72 0.77 0.73 0.76
1.00 400 0.93 0.95 0.97 0.95 0.93 0.95 0.97 0.95

1000 1.00 1.00 0.98 0.98 1.00 1.00 0.99 0.98
40 0.5 400 0.62 0.54 0.62 0.56 0.65 0.58 0.64 0.57

1000 0.95 0.91 0.95 0.90 0.97 0.92 0.95 0.92
1.00 400 0.97 0.96 0.99 0.96 0.98 0.96 0.99 0.97

1000 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.99

Table 5.10. The Type I error rate under the multidimensional (within)
model with correlation 0.40 and 0.80 using Constrained baseline and
Free baseline approach.

Correlation 0.40 Correlation 0.80
Cons. Free Cons. Free

K δ N 10% 20% 10% 20% 10% 20% 10% 20%
10 0.5 400 0.07 0.11 0.05 0.05 0.06 0.07 0.05 0.06

1000 0.09 0.16 0.05 0.05 0.10 0.14 0.05 0.06
1.00 400 0.14 0.24 0.05 0.07 0.15 0.19 0.04 0.08

1000 0.25 0.50 0.05 0.06 0.16 0.32 0.06 0.07
20 0.5 400 0.05 0.06 0.05 0.05 0.04 0.06 0.05 0.05

1000 0.05 0.07 0.04 0.05 0.05 0.07 0.06 0.08
1.00 400 0.06 0.07 0.05 0.05 0.05 0.08 0.06 0.05

1000 0.08 0.13 0.04 0.05 0.06 0.11 0.06 0.06
40 0.5 400 0.04 0.05 0.04 0.04 0.04 0.06 0.05 0.05

1000 0.05 0.07 0.04 0.04 0.05 0.07 0.06 0.08
1.00 400 0.06 0.07 0.05 0.04 0.05 0.08 0.06 0.05

1000 0.08 0.12 0.05 0.05 0.06 0.09 0.06 0.06
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5.5 An Empirical Example

Since most differences in performance between the Free baseline and the
Constrained baseline approach in the simulation study were found for
small test lengths, both methods were applied to detect DIF in a short
length test. The example pertains to the number series scale of a Dutch
intelligence test. This subscale consisted of seven dichotomous items.
The scale was administered in a job selection context. The respondents
were divided into two groups on the basis of gender. The sample
consisted of 263 males and 410 females.

The evaluation of DIF was done using MACS. Table 5.11 gives the
results for both approaches. The column labeled ‘Prob’ gives the
probability value at 5% level of significance; the column labeled
‘Constrained baseline and Free baseline’ denotes how the baseline and
nested models were formed. The statistic has a chi-square distribution
with two degree of freedom. Item 1 was used as reference item for which
the loading was fixed to one and intercept equal to zero; hence no
significance probabilities were shown for item 1. Mean of the latent
variable was zero in the reference group while it was estimated for the
focal group. The analysis has shown that item 4 was identified as a DIF
item by both approaches. The general conclusion is that for the studied
data set, both approaches were efficient for identification of non-fitting
items.

Table 5.11. Evaluation of DIF in both approaches.
Cons. baseline Free baseline

Item Prob Prob
1 - -
2 0.118 0.782
3 0.117 0.531
4 0.021 0.011
5 0.110 0.645
6 0.109 0.752
7 0.122 0.679
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5.6 Discussion and Conclusions

Measurement invariance has long been a central concern in
organizational, cross-cultural, and educational research. However,
researchers in these fields seemed to have developed different
preferences for the type of methodology used to examine this issue. For
many years, cross-cultural and industrial organizational psychologists
relied primarily on comparisons of group means and correlations.
Eventually these approaches were supplemented or replaced by more
complex CFA based methods, such as simultaneous factor analysis of
several populations and MACS. However, in educational measurement,
psychometricians and applied researchers have generally preferred IRT
methods for examining measurement equivalence, because these methods
were designed specifically to distinguish DIF from impact, an issue that
lies at the heart of the polemic about standardized testing.

In this study, we have compared the accuracy of both approaches to
detecting DIF while varying sample size, the number of response
categories, amounts and types of DIF, and the number of items. Rather
than adhering to conventions for data analysis, many of which have not
been examined systematically using simulation studies, we attempted to
illuminate the correspondence between the two approaches. These
strategies, are the Free baseline and Constrained baseline, draw on the
strength of the respective methodologies. A fully Free baseline model
(with the exception of a referent), which, provided it fits the data, is
statistically appropriate as the basis for subsequent nested model
comparisons where one item at a time is constrained to be equal across
groups (Maydeu-Olivares & Cai, 2006). From IRT, it draws on the ideas
of simultaneous comparisons of item parameters (discrimination–
loadings and locations–intercepts) and strict p-values for flagging DIF
items. Here, we examined the Power and Type I error rate of these
strategies for DIF detection methods and compared the results with those
of an alternative approach involving fully constrained-baseline and
augmented models. In the present study, CFA-based mean and
covariance structures method (MACS; Sörbom, 1974) was explored
using Free baseline and Constrained baseline models. This method was
selected because the basic process for identifying DIF items is similar to
the IRT based LR method (see Thissen, Steinberg, & Wainer, 1993). It
involves the comparison of a baseline model with a series of augmented
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or constrained models. In addition, it presumably capable of detecting
DIF due to differences in item discrimination (loadings) and location
(item means or intercepts).

Our results indicated that, with respect to the power of the Free baseline
and Constrained baseline approaches, they are similar in their DIF
detection efficacy. The Constrained baseline approach exhibited a higher
Type I error rate, especially when DIF was simulated on item thresholds.
Especially for small tests, Type I error rate of the Constrained baseline
approach was much higher than those of the Free baseline approaches. In
contrast, the statistically correct Free baseline strategy worked well in all
conditions. Power to detect DIF was high, while Type I errors were near
the nominal level (.05). Moreover, main effects like sample size, effect
size, number of items were evident for instance when DIF was simulated
on item loadings. Both strategies showed lower detection rates, when
DIF was simulated for 3PL. A possible explanation might be the failure
to accommodate guessing behavior. As was expected, both approaches
performed better with polytomous data than with dichotomous data. In
fact, with polytomous data involving five response options, they showed
higher power and only slightly higher error rates. For multidimensional
models, the error rates were slightly more controlled due to the
constraining of more than one referent item. Another finding of this study
is that the between multidimensional models have higher accuracy of
DIF detection compared to the within multidimensional models. A
possible explanation might be that more parameters have to be estimated
which results in loss of precision.

Based on the extensive simulation study, one might conclude in favour of
the Free baseline approach. To evaluate the differences in practice both
approaches for compared for a small test length, since largest differences
between the methods found for small test in the simulation study. For this
specific intelligence test, no difference in the performance was found.

Although this study involved variations of experimental conditions, it
still has several limitations and implications for future research. One
important question is how to find an unbiased referent to implement the
free-baseline strategy in practice. This seems to be of critical importance,
because having bias in the linking subtest severely inflated the Type I
error rates (see the results for our DIF conditions with the constrained-
baseline strategy). Strategies to identify potentially DIF free referent
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items have been discussed in several articles (e.g., Candell & Drasgow,
1988; Cheung & Rensvold, 1999; Stark et al., 2006; Thissen et al., 1988).
Another topic of interest can be the number of more than one referent
items and their impact on the performance in terms of power and Type I
error rates.



Summary

Item response theory (IRT) is a collection of statistical models that used
for development, evaluation, and scoring of instruments. IRT models
describe, in probabilistic terms, the relationship between a person's
response to a test item and his or her standing on the construct being
measured by the test. These measured constructs include any latent (i.e.,
unobservable) variable, such as depression, achievement, or attitude, that
requires multiple test items to estimate a person's level on the construct.
The properties of these models offer many well-known advantages in
testing applications. However, the extent to which these properties are
attained is dependent on the degree to which the IRT model itself is
appropriate. This thesis is concerned with evaluation of model fit from
two perspectives: the items and the respondents. In the first case, for
every item, residuals and item fit statistics are computed to assess
whether the item violates the model. In the second case, residuals and
person fit statistics are computed for every person to assess whether the
responses to the items follow the model.

In Chapter 2, a method for testing model fit due to differential item
functioning (DIF) was proposed in the framework of marginal maximum
likelihood (MML) estimation. The fit of the model is evaluated using the
Lagrange multiplier tests. The tests are based on residuals, that is,
differences between observed and expected mean scores, that support an
appraisal of the seriousness of the model violation. In practice, more than
one DIF item may be present, and therefore, step-wise procedures are
used where DIF items are identified one at a time. In this process of test
purification, items with DIF are identified using statistical tests and DIF
is modeled using group-specific item parameters. The two major issues
addressed in this study were the following. The first problem addressed is
that the dependency of these statistics might cause problems in the
presence of relatively large number DIF items. However, simulation
studies are presented that show that the power and Type I error rate of a
step wise procedure where DIF items are identified one at a time are
good. The second problem pertains to the importance of DIF, i.e., the
effect size, and related problem of defining a stopping rule for the
searching procedure. Simulations are presented that show that the
importance of DIF and the stopping rule can be based on the estimate of
the difference between the means of the ability distributions of the
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studied groups of respondents. The searching procedure is stopped when
the change in this effect size becomes negligible.

In Chapter 3, statistics were developed and evaluated that are sensitive to
specific unidimensional IRT model assumptions. An essential feature of
these statistics is that they are targeted at item fit and based on
information that is aggregated over persons. Examples of assumptions
that evaluated using fit statistics were subpopulation invariance (DIF),
the form of the item response function, and local stochastic
independence. To date the most of the goodness-of-fit tests that have
been proposed are often poorly rooted in statistical theory. To address
this issue, LM statistics that proposed by Glas (1998, 1999) were used.
LM statistics were computed using the estimates of a null-model (the IRT
model of interest) and gauge the effects of adding parameters that
represent violations of the null-model. The obvious advantage of LM test
is that many model violations can be evaluated using estimates of the
null-model only. However, MML estimation method is complicated (in
terms of computation) for multilevel and multidimensional psychometric
models (Fox & Glas, 2001; Béguin & Glas, 2001) due to complex
dependency structures of models and require the evaluation of multiple
integrals needed to solve the estimation equations for parameters. An
alternative to the MML framework with LM tests is the Bayesian
approach with posterior predictive checks (PPCs) for the assessment of
model violations in unidimensioal IRT models. The results of the both
frameworks for fit statistics were compared using a number of
combinations of test length, sample size, effect size and percentage of
misfit items. The overall conclusion was that the LM statistics which
were based on frequentistic framework have an edge over the PPCs.

In Chapter 4, person fit measures were proposed to assess the consistency
of an individuals' response pattern with an IRT measurement model. To
classify an item score pattern as a misfit, a distribution of the statistic
under the null hypothesis of fitting response behavior, the null
distribution, is needed. In practice, the ability parameter is unknown and
has to be estimated. This results in a conservative classification of score
patterns as misfitting (Nering, 1995, 1997; Molenaar & Hoijtink, 1990).
In this study we have compared the frequentist and Bayesian frameworks
that into account effect of estimation of θ. In the first case, Snijders
(2001) correction procedure was employed to derive an asymptotic
sampling distribution for a family of person fit statistics that are linear in
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item responses. An alternative to Snijders procedure, LM statistics which
are based on residuals, that is, differences between observed and
expected mean scores were also evaluated. In the second case, posterior
predictive checks (Glas & Meijer, 2003) which are computed in a
Markov chain Monte Carlo (MCMC) framework were employed. The
two important model violations, Guessing and Item disclosure, were
studied using a number of fit statistics in both frameworks. The
simulation studies for the Type I error rate and power were presented. In
general, the detection rates for aberrant examinees were higher for LM
and Snijders’ procedure while Type I error rates were conservative for
PPCs.

In all these previous chapters, the evaluation of model fit have been done
in the frequentist estimation method using MML and Bayesian estimation
method using MCMC. As an alternative to IRT models, a linear method
based on confirmatory factor analysis (CFA) is considered in Chapter 5
for the assessment of measurement equivalence (DIF). Recently, a few
studies (Raju, Laffitte, & Byrne, 2000; Reise, Widaman, & Pugh, 1993;
Stark, Chernyshenko, & Drasgow, 2006) have offered a review and a
comparison of results from CFA and IRT. Currently there is a variation
in the way nested models are constructed that involve fixing or freeing a
studied item or a subset of items. In Bottom-up, a baseline model is
typically one in which all parameters except the referent are free to vary
and an item is studied by additionally constraining its parameters to be
equal across groups. In Top-down, a baseline model is formed by
constraining the parameters for all items to be equal across groups and a
series of augmented models is formed by freeing the parameters for the
studied item(s), one at a time, and examining the changes in 2G (e.g.,
Thissen, 1991; Bolt, 2002). A comprehensive comparative simulation
study was conducted using the 2PL, 3PL, GRM and a multidimensional
underlying models with combinations of various test length, sample size,
effect size and percentage of misfit items. The results of the study show
that detection rates were comparable among all underlying models and
approaches except for 3PL. The Type I error rates were inflated for the
Top-down approach while close to nominal significance levels for the
Bottom-up approach.
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